Classification / App.py
MINHCT's picture
Init App.py
f8f4b5f verified
raw
history blame
5.47 kB
import joblib # Load Joblib file
import json # Load JSON file
from sklearn.feature_extraction.text import CountVectorizer # Convert text to BOW format
from flask import Flask, request, jsonify # Flask Server
from tensorflow.keras.preprocessing.text import Tokenizer # tokenizing text documents into sequences of tokens (Seq Model)
from tensorflow.keras.preprocessing.sequence import pad_sequences # ensure that all sequences in a dataset have the same length (Seq Model)
from tensorflow.keras.models import load_model # load a pre-trained Keras model saved in the Hierarchical Data Format (HDF5) file format
import numpy as np # scientific computing in Python
import streamlit as st
# load all the models and vectorizer (global vocabulary)
Seq_model = load_model('./LSTM.h5') # Sequential
SVM_Linear_model = joblib.load("./SVM_Linear_Model.joblib") # SVM
logistic_model = joblib.load("./Logistic_Model.joblib") # Logistic
vectorizer = joblib.load('./vectorizer.joblib') # global vocabulary
tokenizer = joblib.load('./tokenizer.joblib')
def crawURL(url):
print(f"Crawling page: {url}")
# Fetch the sitemap
response = requests.get(sitemap_url)
# Parse the sitemap HTML
soup = BeautifulSoup(response.content, 'html.parser')
# Find all anchor tags that are children of span tags with class 'sitemap-link'
urls = [span.a['href'] for span in soup.find_all('span', class_='sitemap-link') if span.a]
# Crawl pages and extract data
try:
print(f"Crawling page: {url}")
# Fetch page content
page_response = requests.get(url)
page_content = page_response.content
# Parse page content with BeautifulSoup
soup = BeautifulSoup(page_content, 'html.parser')
# Extract data you need from the page
author = soup.find("meta", {"name": "author"}).attrs['content'].strip()
date_published = soup.find("meta", {"property": "article:published_time"}).attrs['content'].strip()
article_section = soup.find("meta", {"name": "meta-section"}).attrs['content']
url = soup.find("meta", {"property": "og:url"}).attrs['content']
headline = soup.find("h1", {"data-editable": "headlineText"}).text.strip()
description = soup.find("meta", {"name": "description"}).attrs['content'].strip()
keywords = soup.find("meta", {"name": "keywords"}).attrs['content'].strip()
text = soup.find(itemprop="articleBody")
# Find all <p> tags with class "paragraph inline-placeholder"
paragraphs = text.find_all('p', class_="paragraph inline-placeholder")
# Initialize an empty list to store the text content of each paragraph
paragraph_texts = []
# Iterate over each <p> tag and extract its text content
for paragraph in paragraphs:
paragraph_texts.append(paragraph.text.strip())
# Join the text content of all paragraphs into a single string
full_text = ''.join(paragraph_texts)
return full_text
except Exception as e:
print(f"Failed to crawl page: {url}, Error: {str(e)}")
return null
def process_api(text):
# Vectorize the text data
processed_text = vectorizer.transform([text])
sequence = tokenizer.texts_to_sequences([text])
padded_sequence = pad_sequences(sequence, maxlen=1000, padding='post')
# Get the predicted result from models
Seq_Predicted = Seq_model.predict(padded_sequence)
SVM_Predicted = SVM_model.predict(processed_text).tolist()
Logistic_Predicted = logistic_model.predict(processed_text).tolist()
predicted_label_index = np.argmax(Seq_Predicted)
return {
'Article_Content': text,
'LSTM':int(predicted_label_index),
'SVM_Predicted': int(SVM_Predicted[0]),
'Logistic_Predicted': int(Logistic_Predicted[0])
}
# Using Model to handle and return Category Route
@app.route('/api/categorize', methods=['POST'])
def categorize():
try:
data = request.get_json() # Get JSON data from the request body
text = data['text'] # Get the value of the 'text' key
url = data['url'] # Get the URL from request body
article_content = crawURL(url)
result = process_api(article_content)
return jsonify(result), 200
except:
return jsonify("No text found in the response body"), 400
# Return blogs_from_CNN list
@app.route('/api/blogs', methods=['GET'])
@cross_origin()
def blog_list():
# Specify the path to the uploaded JSON file: [GET] API Blogs
json_file_path = 'C:/Users/LENOVO/Downloads/class/Get_Data_Minimize.json'
# Read and parse the JSON data directly
with open(json_file_path, 'r' ,encoding="utf8") as f:
blogs_from_cnn = json.load(f)
# Python's default behavior is to represent strings with single quotes when printed
# When you print the loaded JSON data in Python,
# you might see the representation with single quotes,
for blog in blogs_from_cnn:
result = process_api(blog['Article text'])
blog.update(result)
print(blog)
return jsonify(blogs_from_cnn), 200
url = st.text_input("enter your CNN's URL here")
if url:
result = categorize(url)
st.json(result)