Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import re | |
import time # For potential brief pauses if needed | |
# --- Hugging Face Token (Optional but Recommended) --- | |
# from huggingface_hub import login | |
# login("YOUR_HUGGINGFACE_TOKEN") # Replace with your token if needed | |
# --- Inference Client --- | |
try: | |
# You might need to specify the model URL directly if the alias isn't working | |
# client = InferenceClient(model="https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta") | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
client.timeout = 120 # Increase timeout for potentially long generations | |
except Exception as e: | |
print(f"Error initializing InferenceClient: {e}") | |
client = None # Set client to None if initialization fails | |
# --- Parsing Function --- | |
def parse_files(raw_response): | |
""" | |
Parses filenames and code blocks from the raw AI output. | |
""" | |
if not raw_response: | |
return [] | |
# Pattern: Look for a filename line followed by content until the next filename line or end of string. | |
pattern = re.compile( | |
r"^\s*([\w\-.\/\\]+\.\w+)\s*\n" # Filename line (must have an extension) | |
r"(.*?)" # Capture content (non-greedy) | |
r"(?=\n\s*[\w\-.\/\\]+\.\w+\s*\n|\Z)", # Lookahead for next filename or end of string | |
re.DOTALL | re.MULTILINE | |
) | |
files = pattern.findall(raw_response) | |
cleaned_files = [] | |
for name, content in files: | |
# Remove common code block markers (``` optionally followed by lang) | |
content_cleaned = re.sub(r"^\s*```[a-zA-Z]*\n?", "", content, flags=re.MULTILINE) | |
content_cleaned = re.sub(r"\n?```\s*$", "", content_cleaned, flags=re.MULTILINE) | |
cleaned_files.append((name.strip(), content_cleaned.strip())) | |
# Fallback if no files parsed but content exists | |
if not cleaned_files and raw_response.strip(): | |
if any(c in raw_response for c in ['<','>','{','}',';','(',')']): | |
print("Warning: No filenames found, defaulting to index.html") | |
lang = "html" | |
if "{" in raw_response and "}" in raw_response and ":" in raw_response: lang = "css" | |
elif "function" in raw_response or "const" in raw_response or "let" in raw_response: lang = "javascript" | |
default_filename = "index.html" | |
if lang == "css": default_filename = "style.css" | |
elif lang == "javascript": default_filename = "script.js" | |
cleaned_files.append((default_filename, raw_response.strip())) | |
return cleaned_files | |
# --- Streaming and Parsing Orchestrator --- | |
def stream_and_parse_code(prompt, backend, system_message, max_tokens, temperature, top_p): | |
""" | |
Streams raw output to one component and generates final tabs for another. | |
This function acts as the main callback for the button click. | |
Yields dictionary updates for Gradio components. | |
""" | |
# Check if client initialized correctly | |
if not client: | |
error_msg = "Error: Inference Client not available. Check API token or model name." | |
# Yield updates to both components indicating the error | |
yield { | |
live_output: gr.update(value=error_msg), | |
final_tabs: gr.Tabs(tabs=[gr.TabItem(label="Error", children=[gr.Textbox(value=error_msg)])]) | |
} | |
return # Stop execution | |
# --- Prepare for Streaming --- | |
# Construct the system prompt dynamically | |
full_sys_msg = f""" | |
You are a code generation AI. Given a prompt, generate the necessary files for a website using the {backend} backend. | |
Always include an index.html file. | |
Respond ONLY with filenames and the raw code for each file. | |
Each file must start with its filename on a new line. Example: | |
index.html | |
<!DOCTYPE html> | |
<html></html> | |
style.css | |
body {{}} | |
script.js | |
console.log("Hello"); | |
Ensure the code is complete. NO commentary, NO explanations, NO markdown formatting like backticks (```). | |
Start generating the files now. | |
""".strip() | |
if system_message: # Append user's system message if provided | |
full_sys_msg += "\n\n" + system_message | |
messages = [ | |
{"role": "system", "content": full_sys_msg}, | |
{"role": "user", "content": prompt} | |
] | |
full_raw_response = "" | |
error_occurred = False | |
error_message = "" | |
# Initial state update: Clear previous output and show generating status | |
yield { | |
live_output: gr.update(value="Generating stream..."), | |
final_tabs: gr.Tabs(tabs=[gr.TabItem(label="Generating...")]) # Indicate loading in tabs | |
} | |
# --- Streaming Loop --- | |
try: | |
# Start the streaming call | |
stream = client.chat_completion( | |
messages, | |
max_tokens=int(max_tokens), # Ensure max_tokens is an integer | |
stream=True, | |
temperature=temperature, | |
top_p=top_p | |
) | |
# Process each chunk received from the stream | |
for chunk in stream: | |
token = chunk.choices[0].delta.content | |
if token: | |
full_raw_response += token | |
# Yield updates for the live raw output component only | |
# Keep tabs in a 'streaming' state during the stream | |
yield { | |
live_output: gr.update(value=full_raw_response), | |
# No update needed for final_tabs here, or keep showing streaming state | |
# final_tabs: gr.Tabs(tabs=[gr.TabItem(label="Streaming...")]) # Optional: update tabs state | |
} | |
# time.sleep(0.01) # Optional: small delay if updates are too fast and causing UI lag | |
except Exception as e: | |
# Handle errors during the API call or streaming process | |
print(f"Error during AI streaming: {e}") | |
error_message = f"Error during AI generation: {e}\n\nPartial Response (if any):\n{full_raw_response}" | |
error_occurred = True | |
# Update live output with error, prepare error tab | |
yield { | |
live_output: gr.update(value=error_message), | |
final_tabs: gr.Tabs(tabs=[gr.TabItem(label="Error")]) # Indicate error state in tabs | |
} | |
# --- Post-Streaming: Parsing and Final Tab Generation --- | |
if error_occurred: | |
# If an error happened during stream, create a final error tab | |
final_tabs_update = gr.Tabs(tabs=[ | |
gr.TabItem(label="Error", children=[gr.Textbox(value=error_message, label="Generation Error", lines=10)]) | |
]) | |
else: | |
# If streaming succeeded, parse the complete raw response | |
print("\n--- Final Raw AI Response ---") | |
print(full_raw_response) | |
print("--------------------------\n") | |
files = parse_files(full_raw_response) | |
if not files: | |
# Handle case where parsing failed or AI gave empty/invalid response | |
no_files_msg = "AI finished, but did not return recognizable file content or the response was empty. See raw output above." | |
final_tabs_update = gr.Tabs(tabs=[ | |
gr.TabItem(label="Output", children=[gr.Textbox(value=no_files_msg, label="Result")]) | |
]) | |
# Update live output as well to make the message clear | |
yield { live_output: gr.update(value=full_raw_response + "\n\n" + no_files_msg), final_tabs: final_tabs_update } | |
return # Exit if no files | |
# --- Create Tabs (if files were parsed successfully) --- | |
tabs_content = [] | |
for name, content in files: | |
name = name.strip() | |
content = content.strip() | |
# Skip if filename or content is empty after stripping | |
if not name or not content: | |
print(f"Skipping file with empty name or content: Name='{name}'") | |
continue | |
# Determine language for syntax highlighting | |
lang = "plaintext" # Default | |
if name.endswith((".html", ".htm")): lang = "html" | |
elif name.endswith(".css"): lang = "css" | |
elif name.endswith(".js"): lang = "javascript" | |
elif name.endswith(".py"): lang = "python" | |
elif name.endswith(".json"): lang = "json" | |
elif name.endswith(".md"): lang = "markdown" | |
elif name.endswith((".sh", ".bash")): lang = "bash" | |
elif name.endswith((".xml", ".xaml", ".svg")): lang = "xml" | |
elif name.endswith(".yaml") or name.endswith(".yml"): lang = "yaml" | |
# Ensure elem_id is unique and valid (replace problematic characters) | |
elem_id = f"tab_{re.sub(r'[^a-zA-Z0-9_-]', '_', name)}" | |
tab_item = gr.TabItem(label=name, elem_id=elem_id, children=[ | |
gr.Code(value=content, language=lang, label=name, interactive=False) # Show code in Code block | |
]) | |
tabs_content.append(tab_item) | |
# Handle case where parsing found files, but they were all filtered out (empty name/content) | |
if not tabs_content: | |
final_tabs_update = gr.Tabs(tabs=[gr.TabItem(label="Output", children=[gr.Textbox(value="No valid files generated after filtering.", label="Result")])]) | |
else: | |
final_tabs_update = gr.Tabs(tabs=tabs_content) # Create the final Tabs component with content | |
# --- Final Update --- | |
# Yield the final state for both components | |
# Use gr.update for live_output if you only want to set its value without recreating it | |
# Directly return the new final_tabs component | |
yield { | |
live_output: gr.update(value=full_raw_response if not error_occurred else error_message), # Show final raw response or error | |
final_tabs: final_tabs_update # Update the final_tabs component completely | |
} | |
# --- Gradio UI Definition --- | |
with gr.Blocks(css=".gradio-container { max-width: 95% !important; }") as demo: # Use more screen width | |
gr.Markdown("## WebGen AI β One Prompt β Full Website Generator") | |
gr.Markdown("Generates website code based on your description. Raw output streams live, final files appear in tabs below.") | |
with gr.Row(): | |
# Column for inputs and controls | |
with gr.Column(scale=2): | |
prompt = gr.Textbox( | |
label="Describe your website", | |
placeholder="E.g., a simple landing page for a coffee shop with sections for menu, about, and contact.", | |
lines=3 # Allow more lines for the prompt | |
) | |
backend = gr.Dropdown( | |
["Static", "Flask", "Node.js"], | |
value="Static", | |
label="Backend Technology" | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
system_message = gr.Textbox( | |
label="Extra instructions for the AI (System Message)", | |
placeholder="Optional: e.g., 'Use Tailwind CSS for styling', 'Make it responsive'", | |
value="", | |
lines=2 | |
) | |
max_tokens = gr.Slider( | |
minimum=256, | |
maximum=4096, # Increased max tokens for complex sites | |
value=2048, # Increased default | |
step=64, | |
label="Max Tokens (Output Length)" | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=1.5, # Allow slightly higher temperature | |
value=0.7, | |
step=0.1, | |
label="Temperature (Creativity)" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (Sampling Focus)" | |
) | |
generate_button = gr.Button("β¨ Generate Code β¨", variant="primary") # Make button primary | |
# Column for live output | |
with gr.Column(scale=3): | |
gr.Markdown("#### Live Raw Output Stream") | |
# Component to show the live, unparsed stream - CORRECTED LANGUAGE | |
live_output = gr.Code( | |
label="Raw AI Stream", | |
language="plaintext", # Use "plaintext" for generic text | |
lines=20, # Increased lines for visibility | |
interactive=False # Output only | |
) | |
gr.Markdown("---") # Separator | |
gr.Markdown("#### Final Generated Files (Tabs)") | |
# Placeholder for the final structured tabs - will be replaced by the output yield | |
final_tabs = gr.Tabs(elem_id="output_tabs") | |
# Button click action - uses the orchestrator function | |
generate_button.click( | |
stream_and_parse_code, # Call the main function that handles streaming and parsing | |
inputs=[prompt, backend, system_message, max_tokens, temperature, top_p], | |
# Outputs dictionary maps function yields to components by variable name | |
outputs=[live_output, final_tabs], | |
show_progress="hidden" # Hide default Gradio progress bar as we show live stream | |
) | |
if __name__ == "__main__": | |
# Launch the Gradio app with debug=True for development | |
demo.launch(debug=True) |