Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,11 +7,12 @@ import pandas as pd
|
|
| 7 |
|
| 8 |
|
| 9 |
# =========================
|
| 10 |
-
# Configurazione
|
| 11 |
# =========================
|
| 12 |
|
| 13 |
MAX_MODELS = 5
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
def get_device():
|
|
@@ -20,21 +21,87 @@ def get_device():
|
|
| 20 |
return "cpu"
|
| 21 |
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
ds = load_dataset("boolq", split="validation")
|
| 29 |
if num_samples is not None and num_samples < len(ds):
|
| 30 |
ds = ds.select(range(num_samples))
|
| 31 |
return ds
|
| 32 |
|
| 33 |
|
| 34 |
-
def
|
| 35 |
-
""
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
prompt = (
|
| 39 |
"Sei un sistema di question answering. "
|
| 40 |
"Rispondi strettamente solo con 'sì' o 'no'.\n\n"
|
|
@@ -45,6 +112,41 @@ def build_boolq_prompt(passage, question):
|
|
| 45 |
return prompt
|
| 46 |
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def parse_yes_no(output_text):
|
| 49 |
"""
|
| 50 |
Estrae 'sì/si' o 'no' dall'output del modello.
|
|
@@ -72,28 +174,63 @@ def parse_yes_no(output_text):
|
|
| 72 |
return None
|
| 73 |
|
| 74 |
|
| 75 |
-
def
|
| 76 |
"""
|
| 77 |
-
|
| 78 |
-
Ritorna:
|
| 79 |
-
- accuracy
|
| 80 |
-
- numero di esempi valutati
|
| 81 |
-
- tempo medio per esempio
|
| 82 |
"""
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 89 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 90 |
-
except Exception as e:
|
| 91 |
-
raise RuntimeError(f"Errore nel caricamento del modello '{model_name}': {e}")
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
model.to(device)
|
| 94 |
model.eval()
|
|
|
|
| 95 |
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
correct = 0
|
| 99 |
total = 0
|
|
@@ -104,73 +241,201 @@ def evaluate_model_on_boolq(model_name, num_samples=DEFAULT_NUM_SAMPLES, max_new
|
|
| 104 |
question = example["question"]
|
| 105 |
label = example["answer"] # True/False
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
| 109 |
|
| 110 |
t0 = time.time()
|
| 111 |
-
|
| 112 |
-
output_ids = model.generate(
|
| 113 |
-
**inputs,
|
| 114 |
-
max_new_tokens=max_new_tokens,
|
| 115 |
-
do_sample=False,
|
| 116 |
-
temperature=0.0,
|
| 117 |
-
)
|
| 118 |
t1 = time.time()
|
| 119 |
-
gen_text = tokenizer.decode(
|
| 120 |
-
output_ids[0][inputs["input_ids"].shape[-1]:],
|
| 121 |
-
skip_special_tokens=True,
|
| 122 |
-
)
|
| 123 |
|
| 124 |
pred = parse_yes_no(gen_text)
|
| 125 |
|
| 126 |
-
# Contiamo sempre l'esempio, anche se il modello non risponde in modo valido
|
| 127 |
total += 1
|
| 128 |
times.append(t1 - t0)
|
| 129 |
|
| 130 |
if pred is not None and pred == label:
|
| 131 |
correct += 1
|
| 132 |
|
| 133 |
-
if total
|
| 134 |
-
|
| 135 |
-
avg_time = None
|
| 136 |
-
else:
|
| 137 |
-
accuracy = correct / total
|
| 138 |
-
avg_time = sum(times) / len(times) if times else None
|
| 139 |
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
return {
|
| 143 |
"model_name": model_name,
|
|
|
|
| 144 |
"num_samples": total,
|
| 145 |
"accuracy": accuracy,
|
| 146 |
"avg_time_per_sample_sec": avg_time,
|
| 147 |
-
"total_time_sec": total_time,
|
| 148 |
}
|
| 149 |
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
# =========================
|
| 152 |
# Funzioni per la UI
|
| 153 |
# =========================
|
| 154 |
|
| 155 |
def add_model_field(current_count):
|
| 156 |
-
"""
|
| 157 |
-
Aumenta il numero di campi modello visibili, fino a MAX_MODELS.
|
| 158 |
-
"""
|
| 159 |
if current_count < MAX_MODELS:
|
| 160 |
current_count += 1
|
| 161 |
return current_count
|
| 162 |
|
| 163 |
|
| 164 |
def get_visible_textboxes(model_count):
|
| 165 |
-
"""
|
| 166 |
-
Ritorna la visibilità dei 5 campi modello in base a model_count.
|
| 167 |
-
"""
|
| 168 |
visibility = []
|
| 169 |
for i in range(1, MAX_MODELS + 1):
|
| 170 |
visibility.append(gr.update(visible=(i <= model_count)))
|
| 171 |
return visibility
|
| 172 |
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
def run_benchmark_ui(
|
| 175 |
model_1,
|
| 176 |
model_2,
|
|
@@ -178,15 +443,15 @@ def run_benchmark_ui(
|
|
| 178 |
model_4,
|
| 179 |
model_5,
|
| 180 |
model_count,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
num_samples,
|
| 182 |
):
|
| 183 |
-
|
| 184 |
-
Funzione chiamata dal pulsante 'Esegui benchmark'.
|
| 185 |
-
Raccoglie i nomi dei modelli, esegue il benchmark e ritorna:
|
| 186 |
-
- tabella risultati
|
| 187 |
-
- log testuale
|
| 188 |
-
"""
|
| 189 |
-
# Raccogli i modelli attivi
|
| 190 |
model_names = []
|
| 191 |
all_models = [model_1, model_2, model_3, model_4, model_5]
|
| 192 |
for i in range(model_count):
|
|
@@ -194,45 +459,64 @@ def run_benchmark_ui(
|
|
| 194 |
if name:
|
| 195 |
model_names.append(name)
|
| 196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
if len(model_names) < 2:
|
| 198 |
-
return (
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
)
|
| 202 |
|
| 203 |
-
results = []
|
| 204 |
logs = []
|
|
|
|
| 205 |
|
| 206 |
-
logs.append(f"Avvio benchmark
|
| 207 |
logs.append(f"Modelli: {', '.join(model_names)}")
|
|
|
|
| 208 |
logs.append("Device: " + get_device())
|
| 209 |
logs.append("====================================")
|
| 210 |
|
| 211 |
-
for
|
| 212 |
-
logs.append(f"\n[MODELLO] {
|
| 213 |
try:
|
| 214 |
-
|
| 215 |
-
results.append(res)
|
| 216 |
-
|
| 217 |
-
avg_time_str = (
|
| 218 |
-
f"{res['avg_time_per_sample_sec']:.3f}"
|
| 219 |
-
if res['avg_time_per_sample_sec'] is not None
|
| 220 |
-
else "N/A"
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
logs.append(
|
| 224 |
-
f" - Esempi valutati: {res['num_samples']}\n"
|
| 225 |
-
f" - Accuracy: {res['accuracy']:.3f}\n"
|
| 226 |
-
f" - Tempo medio per esempio (s): {avg_time_str}\n"
|
| 227 |
-
f" - Tempo totale (s): {res['total_time_sec']:.3f}"
|
| 228 |
-
)
|
| 229 |
except Exception as e:
|
| 230 |
-
logs.append(f" ERRORE: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
if results:
|
| 233 |
df = pd.DataFrame(results)
|
| 234 |
-
|
| 235 |
-
df = df.sort_values(by="accuracy", ascending=False)
|
| 236 |
else:
|
| 237 |
df = pd.DataFrame()
|
| 238 |
|
|
@@ -241,27 +525,33 @@ def run_benchmark_ui(
|
|
| 241 |
|
| 242 |
|
| 243 |
# =========================
|
| 244 |
-
#
|
| 245 |
# =========================
|
| 246 |
|
| 247 |
-
with gr.Blocks(title="LLM Benchmark Space -
|
| 248 |
gr.Markdown(
|
| 249 |
"""
|
| 250 |
-
# 🔍 LLM Benchmark Space (
|
| 251 |
|
| 252 |
-
Inserisci i nomi dei modelli Hugging Face (es. `
|
| 253 |
-
e confrontali su
|
| 254 |
|
| 255 |
- Minimo **2 modelli**
|
| 256 |
- Puoi aggiungere fino a **5 modelli** con il pulsante **"+ Aggiungi modello"**
|
| 257 |
-
-
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
"""
|
| 261 |
)
|
| 262 |
|
| 263 |
with gr.Row():
|
| 264 |
with gr.Column():
|
|
|
|
| 265 |
model_count_state = gr.State(value=2)
|
| 266 |
|
| 267 |
model_1 = gr.Textbox(
|
|
@@ -295,14 +585,50 @@ with gr.Blocks(title="LLM Benchmark Space - BoolQ (IT)") as demo:
|
|
| 295 |
visible=False,
|
| 296 |
)
|
| 297 |
|
| 298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
num_samples = gr.Slider(
|
| 301 |
minimum=10,
|
| 302 |
maximum=200,
|
| 303 |
step=10,
|
| 304 |
value=DEFAULT_NUM_SAMPLES,
|
| 305 |
-
label="Numero di esempi
|
| 306 |
)
|
| 307 |
|
| 308 |
run_button = gr.Button("🚀 Esegui benchmark", variant="primary")
|
|
@@ -311,6 +637,7 @@ with gr.Blocks(title="LLM Benchmark Space - BoolQ (IT)") as demo:
|
|
| 311 |
results_df = gr.Dataframe(
|
| 312 |
headers=[
|
| 313 |
"model_name",
|
|
|
|
| 314 |
"num_samples",
|
| 315 |
"accuracy",
|
| 316 |
"avg_time_per_sample_sec",
|
|
@@ -321,23 +648,35 @@ with gr.Blocks(title="LLM Benchmark Space - BoolQ (IT)") as demo:
|
|
| 321 |
)
|
| 322 |
logs_box = gr.Textbox(
|
| 323 |
label="Log esecuzione",
|
| 324 |
-
lines=
|
| 325 |
interactive=False,
|
| 326 |
)
|
| 327 |
|
| 328 |
-
# Logica
|
| 329 |
def on_add_model(model_count):
|
| 330 |
new_count = add_model_field(model_count)
|
| 331 |
visibility_updates = get_visible_textboxes(new_count)
|
| 332 |
return [new_count] + visibility_updates
|
| 333 |
|
| 334 |
-
|
| 335 |
fn=on_add_model,
|
| 336 |
inputs=[model_count_state],
|
| 337 |
outputs=[model_count_state, model_1, model_2, model_3, model_4, model_5],
|
| 338 |
)
|
| 339 |
|
| 340 |
-
# Logica
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
run_button.click(
|
| 342 |
fn=run_benchmark_ui,
|
| 343 |
inputs=[
|
|
@@ -347,6 +686,12 @@ with gr.Blocks(title="LLM Benchmark Space - BoolQ (IT)") as demo:
|
|
| 347 |
model_4,
|
| 348 |
model_5,
|
| 349 |
model_count_state,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
num_samples,
|
| 351 |
],
|
| 352 |
outputs=[results_df, logs_box],
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
# =========================
|
| 10 |
+
# Configurazione generale
|
| 11 |
# =========================
|
| 12 |
|
| 13 |
MAX_MODELS = 5
|
| 14 |
+
MAX_DATASETS = 5
|
| 15 |
+
DEFAULT_NUM_SAMPLES = 50 # numero di esempi da usare per ogni dataset
|
| 16 |
|
| 17 |
|
| 18 |
def get_device():
|
|
|
|
| 21 |
return "cpu"
|
| 22 |
|
| 23 |
|
| 24 |
+
# =========================
|
| 25 |
+
# Definizione dataset
|
| 26 |
+
# =========================
|
| 27 |
+
|
| 28 |
+
DATASETS = {
|
| 29 |
+
"boolq_en": {
|
| 30 |
+
"label": "BoolQ (en)",
|
| 31 |
+
"language": "en",
|
| 32 |
+
"description": "Yes/No QA su contesti in inglese",
|
| 33 |
+
},
|
| 34 |
+
"squad_it": {
|
| 35 |
+
"label": "SQuAD-it (it)",
|
| 36 |
+
"language": "it",
|
| 37 |
+
"description": "QA estrattivo in italiano",
|
| 38 |
+
},
|
| 39 |
+
"pawsx_it": {
|
| 40 |
+
"label": "PAWS-X (it)",
|
| 41 |
+
"language": "it",
|
| 42 |
+
"description": "Parafrasi in italiano (stesso significato sì/no)",
|
| 43 |
+
},
|
| 44 |
+
"sentiment_it": {
|
| 45 |
+
"label": "Sentiment-it (it)",
|
| 46 |
+
"language": "it",
|
| 47 |
+
"description": "Sentiment positivo/negativo in italiano",
|
| 48 |
+
},
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
DATASET_LABELS = [cfg["label"] for cfg in DATASETS.values()]
|
| 52 |
+
|
| 53 |
+
LABEL_TO_KEY = {cfg["label"]: key for key, cfg in DATASETS.items()}
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# =========================
|
| 57 |
+
# Loader dataset
|
| 58 |
+
# =========================
|
| 59 |
+
|
| 60 |
+
def load_boolq(num_samples=DEFAULT_NUM_SAMPLES):
|
| 61 |
ds = load_dataset("boolq", split="validation")
|
| 62 |
if num_samples is not None and num_samples < len(ds):
|
| 63 |
ds = ds.select(range(num_samples))
|
| 64 |
return ds
|
| 65 |
|
| 66 |
|
| 67 |
+
def load_squad_it(num_samples=DEFAULT_NUM_SAMPLES):
|
| 68 |
+
# Nota: se "squad_it" non esiste o ha split diversi, qui puoi adattare.
|
| 69 |
+
ds = load_dataset("squad_it", split="test")
|
| 70 |
+
if num_samples is not None and num_samples < len(ds):
|
| 71 |
+
ds = ds.select(range(num_samples))
|
| 72 |
+
return ds
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def load_pawsx_it(num_samples=DEFAULT_NUM_SAMPLES):
|
| 76 |
+
ds = load_dataset("paws-x", "it", split="validation")
|
| 77 |
+
if num_samples is not None and num_samples < len(ds):
|
| 78 |
+
ds = ds.select(range(num_samples))
|
| 79 |
+
return ds
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def load_sentiment_it(num_samples=DEFAULT_NUM_SAMPLES):
|
| 83 |
+
ds = load_dataset("sentiment-it", split="train")
|
| 84 |
+
if num_samples is not None and num_samples < len(ds):
|
| 85 |
+
ds = ds.select(range(num_samples))
|
| 86 |
+
return ds
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# =========================
|
| 90 |
+
# Prompt & parsing
|
| 91 |
+
# =========================
|
| 92 |
+
|
| 93 |
+
def build_boolq_prompt_en(passage, question):
|
| 94 |
+
prompt = (
|
| 95 |
+
"You are a question answering system. "
|
| 96 |
+
"Answer strictly with 'yes' or 'no'.\n\n"
|
| 97 |
+
f"Passage: {passage}\n"
|
| 98 |
+
f"Question: {question}\n"
|
| 99 |
+
"Answer:"
|
| 100 |
+
)
|
| 101 |
+
return prompt
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def build_boolq_prompt_it(passage, question):
|
| 105 |
prompt = (
|
| 106 |
"Sei un sistema di question answering. "
|
| 107 |
"Rispondi strettamente solo con 'sì' o 'no'.\n\n"
|
|
|
|
| 112 |
return prompt
|
| 113 |
|
| 114 |
|
| 115 |
+
def build_squad_it_prompt(context, question):
|
| 116 |
+
prompt = (
|
| 117 |
+
"Sei un sistema di question answering in italiano. "
|
| 118 |
+
"Rispondi con una breve frase che risponde alla domanda.\n\n"
|
| 119 |
+
f"Contesto: {context}\n"
|
| 120 |
+
f"Domanda: {question}\n"
|
| 121 |
+
"Risposta:"
|
| 122 |
+
)
|
| 123 |
+
return prompt
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def build_pawsx_it_prompt(sentence1, sentence2):
|
| 127 |
+
prompt = (
|
| 128 |
+
"Sei un sistema di riconoscimento di parafrasi in italiano.\n"
|
| 129 |
+
"Ti verranno date due frasi. Devi dire se esprimono lo stesso significato.\n"
|
| 130 |
+
"Rispondi strettamente solo con 'sì' o 'no'.\n\n"
|
| 131 |
+
f"Frase 1: {sentence1}\n"
|
| 132 |
+
f"Frase 2: {sentence2}\n"
|
| 133 |
+
"Le due frasi hanno lo stesso significato?\n"
|
| 134 |
+
"Risposta:"
|
| 135 |
+
)
|
| 136 |
+
return prompt
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def build_sentiment_it_prompt(text):
|
| 140 |
+
prompt = (
|
| 141 |
+
"Sei un sistema di analisi del sentiment in italiano.\n"
|
| 142 |
+
"Ti verrà dato un testo. Devi dire se il sentiment è positivo o negativo.\n"
|
| 143 |
+
"Rispondi strettamente solo con 'positivo' o 'negativo'.\n\n"
|
| 144 |
+
f"Testo: {text}\n"
|
| 145 |
+
"Sentiment:"
|
| 146 |
+
)
|
| 147 |
+
return prompt
|
| 148 |
+
|
| 149 |
+
|
| 150 |
def parse_yes_no(output_text):
|
| 151 |
"""
|
| 152 |
Estrae 'sì/si' o 'no' dall'output del modello.
|
|
|
|
| 174 |
return None
|
| 175 |
|
| 176 |
|
| 177 |
+
def parse_sentiment_it(output_text):
|
| 178 |
"""
|
| 179 |
+
Ritorna True per positivo, False per negativo, None se non riconosciuto.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
"""
|
| 181 |
+
text = output_text.strip().lower()
|
| 182 |
+
if not text:
|
| 183 |
+
return None
|
| 184 |
+
|
| 185 |
+
first = text.split()[0]
|
| 186 |
+
|
| 187 |
+
if first.startswith("pos"):
|
| 188 |
+
return True
|
| 189 |
+
if first.startswith("neg"):
|
| 190 |
+
return False
|
| 191 |
+
|
| 192 |
+
return None
|
| 193 |
+
|
| 194 |
|
| 195 |
+
def normalize_text(s):
|
| 196 |
+
return " ".join(s.strip().lower().split())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
|
| 199 |
+
# =========================
|
| 200 |
+
# Modello: load & generate
|
| 201 |
+
# =========================
|
| 202 |
+
|
| 203 |
+
def load_model(model_name):
|
| 204 |
+
device = get_device()
|
| 205 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 206 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 207 |
model.to(device)
|
| 208 |
model.eval()
|
| 209 |
+
return tokenizer, model, device
|
| 210 |
|
| 211 |
+
|
| 212 |
+
def generate_text(tokenizer, model, device, prompt, max_new_tokens=32):
|
| 213 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 214 |
+
with torch.no_grad():
|
| 215 |
+
output_ids = model.generate(
|
| 216 |
+
**inputs,
|
| 217 |
+
max_new_tokens=max_new_tokens,
|
| 218 |
+
do_sample=False,
|
| 219 |
+
temperature=0.0,
|
| 220 |
+
)
|
| 221 |
+
gen_text = tokenizer.decode(
|
| 222 |
+
output_ids[0][inputs["input_ids"].shape[-1]:],
|
| 223 |
+
skip_special_tokens=True,
|
| 224 |
+
)
|
| 225 |
+
return gen_text
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# =========================
|
| 229 |
+
# Valutazione per dataset
|
| 230 |
+
# =========================
|
| 231 |
+
|
| 232 |
+
def evaluate_on_boolq(model_name, tokenizer, model, device, num_samples=DEFAULT_NUM_SAMPLES, lang="en"):
|
| 233 |
+
ds = load_boolq(num_samples=num_samples)
|
| 234 |
|
| 235 |
correct = 0
|
| 236 |
total = 0
|
|
|
|
| 241 |
question = example["question"]
|
| 242 |
label = example["answer"] # True/False
|
| 243 |
|
| 244 |
+
if lang == "en":
|
| 245 |
+
prompt = build_boolq_prompt_en(passage, question)
|
| 246 |
+
else:
|
| 247 |
+
prompt = build_boolq_prompt_it(passage, question)
|
| 248 |
|
| 249 |
t0 = time.time()
|
| 250 |
+
gen_text = generate_text(tokenizer, model, device, prompt, max_new_tokens=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
t1 = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
pred = parse_yes_no(gen_text)
|
| 254 |
|
|
|
|
| 255 |
total += 1
|
| 256 |
times.append(t1 - t0)
|
| 257 |
|
| 258 |
if pred is not None and pred == label:
|
| 259 |
correct += 1
|
| 260 |
|
| 261 |
+
accuracy = correct / total if total > 0 else 0.0
|
| 262 |
+
avg_time = sum(times) / len(times) if times else None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
return {
|
| 265 |
+
"model_name": model_name,
|
| 266 |
+
"dataset": "BoolQ (en)" if lang == "en" else "BoolQ (it)",
|
| 267 |
+
"num_samples": total,
|
| 268 |
+
"accuracy": accuracy,
|
| 269 |
+
"avg_time_per_sample_sec": avg_time,
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def evaluate_on_squad_it(model_name, tokenizer, model, device, num_samples=DEFAULT_NUM_SAMPLES):
|
| 274 |
+
ds = load_squad_it(num_samples=num_samples)
|
| 275 |
+
|
| 276 |
+
correct = 0
|
| 277 |
+
total = 0
|
| 278 |
+
times = []
|
| 279 |
+
|
| 280 |
+
for example in ds:
|
| 281 |
+
context = example["context"]
|
| 282 |
+
question = example["question"]
|
| 283 |
+
answers = example.get("answers", {})
|
| 284 |
+
gold_answers = answers.get("text", []) if isinstance(answers, dict) else []
|
| 285 |
+
|
| 286 |
+
prompt = build_squad_it_prompt(context, question)
|
| 287 |
+
|
| 288 |
+
t0 = time.time()
|
| 289 |
+
gen_text = generate_text(tokenizer, model, device, prompt, max_new_tokens=32)
|
| 290 |
+
t1 = time.time()
|
| 291 |
+
|
| 292 |
+
pred = normalize_text(gen_text)
|
| 293 |
+
total += 1
|
| 294 |
+
times.append(t1 - t0)
|
| 295 |
+
|
| 296 |
+
if gold_answers:
|
| 297 |
+
gold_norm = [normalize_text(a) for a in gold_answers]
|
| 298 |
+
if any(g in pred or pred in g for g in gold_norm):
|
| 299 |
+
correct += 1
|
| 300 |
+
|
| 301 |
+
accuracy = correct / total if total > 0 else 0.0
|
| 302 |
+
avg_time = sum(times) / len(times) if times else None
|
| 303 |
+
|
| 304 |
+
return {
|
| 305 |
+
"model_name": model_name,
|
| 306 |
+
"dataset": "SQuAD-it (it)",
|
| 307 |
+
"num_samples": total,
|
| 308 |
+
"accuracy": accuracy,
|
| 309 |
+
"avg_time_per_sample_sec": avg_time,
|
| 310 |
+
}
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def evaluate_on_pawsx_it(model_name, tokenizer, model, device, num_samples=DEFAULT_NUM_SAMPLES):
|
| 314 |
+
ds = load_pawsx_it(num_samples=num_samples)
|
| 315 |
+
|
| 316 |
+
correct = 0
|
| 317 |
+
total = 0
|
| 318 |
+
times = []
|
| 319 |
+
|
| 320 |
+
for example in ds:
|
| 321 |
+
s1 = example["sentence1"]
|
| 322 |
+
s2 = example["sentence2"]
|
| 323 |
+
label = example["label"] # 0: non-parafrasi, 1: parafrasi
|
| 324 |
+
|
| 325 |
+
prompt = build_pawsx_it_prompt(s1, s2)
|
| 326 |
+
|
| 327 |
+
t0 = time.time()
|
| 328 |
+
gen_text = generate_text(tokenizer, model, device, prompt, max_new_tokens=5)
|
| 329 |
+
t1 = time.time()
|
| 330 |
+
|
| 331 |
+
pred = parse_yes_no(gen_text)
|
| 332 |
+
total += 1
|
| 333 |
+
times.append(t1 - t0)
|
| 334 |
+
|
| 335 |
+
if pred is not None:
|
| 336 |
+
is_paraphrase = (label == 1)
|
| 337 |
+
if pred == is_paraphrase:
|
| 338 |
+
correct += 1
|
| 339 |
+
|
| 340 |
+
accuracy = correct / total if total > 0 else 0.0
|
| 341 |
+
avg_time = sum(times) / len(times) if times else None
|
| 342 |
+
|
| 343 |
+
return {
|
| 344 |
+
"model_name": model_name,
|
| 345 |
+
"dataset": "PAWS-X (it)",
|
| 346 |
+
"num_samples": total,
|
| 347 |
+
"accuracy": accuracy,
|
| 348 |
+
"avg_time_per_sample_sec": avg_time,
|
| 349 |
+
}
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def evaluate_on_sentiment_it(model_name, tokenizer, model, device, num_samples=DEFAULT_NUM_SAMPLES):
|
| 353 |
+
ds = load_sentiment_it(num_samples=num_samples)
|
| 354 |
+
|
| 355 |
+
correct = 0
|
| 356 |
+
total = 0
|
| 357 |
+
times = []
|
| 358 |
+
|
| 359 |
+
for example in ds:
|
| 360 |
+
text = example["text"]
|
| 361 |
+
label = example["label"] # 0: negativo, 1: positivo (tipico schema)
|
| 362 |
+
|
| 363 |
+
prompt = build_sentiment_it_prompt(text)
|
| 364 |
+
|
| 365 |
+
t0 = time.time()
|
| 366 |
+
gen_text = generate_text(tokenizer, model, device, prompt, max_new_tokens=5)
|
| 367 |
+
t1 = time.time()
|
| 368 |
+
|
| 369 |
+
pred = parse_sentiment_it(gen_text)
|
| 370 |
+
total += 1
|
| 371 |
+
times.append(t1 - t0)
|
| 372 |
+
|
| 373 |
+
if pred is not None:
|
| 374 |
+
is_positive = (label == 1)
|
| 375 |
+
if pred == is_positive:
|
| 376 |
+
correct += 1
|
| 377 |
+
|
| 378 |
+
accuracy = correct / total if total > 0 else 0.0
|
| 379 |
+
avg_time = sum(times) / len(times) if times else None
|
| 380 |
|
| 381 |
return {
|
| 382 |
"model_name": model_name,
|
| 383 |
+
"dataset": "Sentiment-it (it)",
|
| 384 |
"num_samples": total,
|
| 385 |
"accuracy": accuracy,
|
| 386 |
"avg_time_per_sample_sec": avg_time,
|
|
|
|
| 387 |
}
|
| 388 |
|
| 389 |
|
| 390 |
+
def evaluate_model_on_dataset(model_name, tokenizer, model, device, dataset_key, num_samples):
|
| 391 |
+
start_total = time.time()
|
| 392 |
+
|
| 393 |
+
if dataset_key == "boolq_en":
|
| 394 |
+
res = evaluate_on_boolq(model_name, tokenizer, model, device, num_samples=num_samples, lang="en")
|
| 395 |
+
elif dataset_key == "squad_it":
|
| 396 |
+
res = evaluate_on_squad_it(model_name, tokenizer, model, device, num_samples=num_samples)
|
| 397 |
+
elif dataset_key == "pawsx_it":
|
| 398 |
+
res = evaluate_on_pawsx_it(model_name, tokenizer, model, device, num_samples=num_samples)
|
| 399 |
+
elif dataset_key == "sentiment_it":
|
| 400 |
+
res = evaluate_on_sentiment_it(model_name, tokenizer, model, device, num_samples=num_samples)
|
| 401 |
+
else:
|
| 402 |
+
raise ValueError(f"Dataset non supportato: {dataset_key}")
|
| 403 |
+
|
| 404 |
+
total_time = time.time() - start_total
|
| 405 |
+
res["total_time_sec"] = total_time
|
| 406 |
+
return res
|
| 407 |
+
|
| 408 |
+
|
| 409 |
# =========================
|
| 410 |
# Funzioni per la UI
|
| 411 |
# =========================
|
| 412 |
|
| 413 |
def add_model_field(current_count):
|
|
|
|
|
|
|
|
|
|
| 414 |
if current_count < MAX_MODELS:
|
| 415 |
current_count += 1
|
| 416 |
return current_count
|
| 417 |
|
| 418 |
|
| 419 |
def get_visible_textboxes(model_count):
|
|
|
|
|
|
|
|
|
|
| 420 |
visibility = []
|
| 421 |
for i in range(1, MAX_MODELS + 1):
|
| 422 |
visibility.append(gr.update(visible=(i <= model_count)))
|
| 423 |
return visibility
|
| 424 |
|
| 425 |
|
| 426 |
+
def add_dataset_field(current_count):
|
| 427 |
+
if current_count < MAX_DATASETS:
|
| 428 |
+
current_count += 1
|
| 429 |
+
return current_count
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
def get_visible_datasets(dataset_count):
|
| 433 |
+
visibility = []
|
| 434 |
+
for i in range(1, MAX_DATASETS + 1):
|
| 435 |
+
visibility.append(gr.update(visible=(i <= dataset_count)))
|
| 436 |
+
return visibility
|
| 437 |
+
|
| 438 |
+
|
| 439 |
def run_benchmark_ui(
|
| 440 |
model_1,
|
| 441 |
model_2,
|
|
|
|
| 443 |
model_4,
|
| 444 |
model_5,
|
| 445 |
model_count,
|
| 446 |
+
dataset_1,
|
| 447 |
+
dataset_2,
|
| 448 |
+
dataset_3,
|
| 449 |
+
dataset_4,
|
| 450 |
+
dataset_5,
|
| 451 |
+
dataset_count,
|
| 452 |
num_samples,
|
| 453 |
):
|
| 454 |
+
# Raccogli modelli
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 455 |
model_names = []
|
| 456 |
all_models = [model_1, model_2, model_3, model_4, model_5]
|
| 457 |
for i in range(model_count):
|
|
|
|
| 459 |
if name:
|
| 460 |
model_names.append(name)
|
| 461 |
|
| 462 |
+
# Raccogli dataset
|
| 463 |
+
dataset_labels = []
|
| 464 |
+
all_datasets = [dataset_1, dataset_2, dataset_3, dataset_4, dataset_5]
|
| 465 |
+
for i in range(dataset_count):
|
| 466 |
+
label = all_datasets[i]
|
| 467 |
+
if label in LABEL_TO_KEY:
|
| 468 |
+
dataset_labels.append(label)
|
| 469 |
+
|
| 470 |
if len(model_names) < 2:
|
| 471 |
+
return pd.DataFrame(), "Devi specificare almeno due modelli validi."
|
| 472 |
+
|
| 473 |
+
if len(dataset_labels) < 1:
|
| 474 |
+
return pd.DataFrame(), "Devi selezionare almeno un dataset."
|
| 475 |
|
|
|
|
| 476 |
logs = []
|
| 477 |
+
results = []
|
| 478 |
|
| 479 |
+
logs.append(f"Avvio benchmark con {num_samples} esempi per dataset...")
|
| 480 |
logs.append(f"Modelli: {', '.join(model_names)}")
|
| 481 |
+
logs.append(f"Dataset: {', '.join(dataset_labels)}")
|
| 482 |
logs.append("Device: " + get_device())
|
| 483 |
logs.append("====================================")
|
| 484 |
|
| 485 |
+
for model_name in model_names:
|
| 486 |
+
logs.append(f"\n[MODELLO] {model_name}")
|
| 487 |
try:
|
| 488 |
+
tokenizer, model, device = load_model(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
except Exception as e:
|
| 490 |
+
logs.append(f" ERRORE nel caricamento del modello: {e}")
|
| 491 |
+
continue
|
| 492 |
+
|
| 493 |
+
for dlabel in dataset_labels:
|
| 494 |
+
dkey = LABEL_TO_KEY[dlabel]
|
| 495 |
+
logs.append(f" [DATASET] {dlabel}")
|
| 496 |
+
try:
|
| 497 |
+
res = evaluate_model_on_dataset(
|
| 498 |
+
model_name, tokenizer, model, device, dkey, num_samples
|
| 499 |
+
)
|
| 500 |
+
results.append(res)
|
| 501 |
+
|
| 502 |
+
avg_time_str = (
|
| 503 |
+
f"{res['avg_time_per_sample_sec']:.3f}"
|
| 504 |
+
if res["avg_time_per_sample_sec"] is not None
|
| 505 |
+
else "N/A"
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
logs.append(
|
| 509 |
+
f" - Esempi valutati: {res['num_samples']}\n"
|
| 510 |
+
f" - Accuracy: {res['accuracy']:.3f}\n"
|
| 511 |
+
f" - Tempo medio per esempio (s): {avg_time_str}\n"
|
| 512 |
+
f" - Tempo totale (s): {res['total_time_sec']:.3f}"
|
| 513 |
+
)
|
| 514 |
+
except Exception as e:
|
| 515 |
+
logs.append(f" ERRORE durante il benchmark: {e}")
|
| 516 |
|
| 517 |
if results:
|
| 518 |
df = pd.DataFrame(results)
|
| 519 |
+
df = df.sort_values(by=["dataset", "accuracy"], ascending=[True, False])
|
|
|
|
| 520 |
else:
|
| 521 |
df = pd.DataFrame()
|
| 522 |
|
|
|
|
| 525 |
|
| 526 |
|
| 527 |
# =========================
|
| 528 |
+
# Interfaccia Gradio
|
| 529 |
# =========================
|
| 530 |
|
| 531 |
+
with gr.Blocks(title="LLM Benchmark Space - Multi-dataset") as demo:
|
| 532 |
gr.Markdown(
|
| 533 |
"""
|
| 534 |
+
# 🔍 LLM Benchmark Space (multi-dataset)
|
| 535 |
|
| 536 |
+
Inserisci i nomi dei modelli Hugging Face (es. `Mattimax/DAC4.3`)
|
| 537 |
+
e confrontali su uno o più dataset selezionabili da menu a tendina.
|
| 538 |
|
| 539 |
- Minimo **2 modelli**
|
| 540 |
- Puoi aggiungere fino a **5 modelli** con il pulsante **"+ Aggiungi modello"**
|
| 541 |
+
- Puoi selezionare **1 o più dataset** (fino a 5) con il pulsante **"+ Aggiungi dataset"**
|
| 542 |
+
- Output: tabella con **modello**, **dataset**, **accuracy**, numero di esempi e tempi
|
| 543 |
+
|
| 544 |
+
Dataset disponibili:
|
| 545 |
+
- BoolQ (en)
|
| 546 |
+
- SQuAD-it (it)
|
| 547 |
+
- PAWS-X (it)
|
| 548 |
+
- Sentiment-it (it)
|
| 549 |
"""
|
| 550 |
)
|
| 551 |
|
| 552 |
with gr.Row():
|
| 553 |
with gr.Column():
|
| 554 |
+
# Stato numero modelli
|
| 555 |
model_count_state = gr.State(value=2)
|
| 556 |
|
| 557 |
model_1 = gr.Textbox(
|
|
|
|
| 585 |
visible=False,
|
| 586 |
)
|
| 587 |
|
| 588 |
+
add_model_button = gr.Button("+ Aggiungi modello")
|
| 589 |
+
|
| 590 |
+
# Stato numero dataset
|
| 591 |
+
dataset_count_state = gr.State(value=1)
|
| 592 |
+
|
| 593 |
+
dataset_1 = gr.Dropdown(
|
| 594 |
+
label="Dataset 1",
|
| 595 |
+
choices=DATASET_LABELS,
|
| 596 |
+
value="BoolQ (en)",
|
| 597 |
+
visible=True,
|
| 598 |
+
)
|
| 599 |
+
dataset_2 = gr.Dropdown(
|
| 600 |
+
label="Dataset 2",
|
| 601 |
+
choices=DATASET_LABELS,
|
| 602 |
+
value="SQuAD-it (it)",
|
| 603 |
+
visible=False,
|
| 604 |
+
)
|
| 605 |
+
dataset_3 = gr.Dropdown(
|
| 606 |
+
label="Dataset 3",
|
| 607 |
+
choices=DATASET_LABELS,
|
| 608 |
+
value="PAWS-X (it)",
|
| 609 |
+
visible=False,
|
| 610 |
+
)
|
| 611 |
+
dataset_4 = gr.Dropdown(
|
| 612 |
+
label="Dataset 4",
|
| 613 |
+
choices=DATASET_LABELS,
|
| 614 |
+
value="Sentiment-it (it)",
|
| 615 |
+
visible=False,
|
| 616 |
+
)
|
| 617 |
+
dataset_5 = gr.Dropdown(
|
| 618 |
+
label="Dataset 5",
|
| 619 |
+
choices=DATASET_LABELS,
|
| 620 |
+
value="BoolQ (en)",
|
| 621 |
+
visible=False,
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
add_dataset_button = gr.Button("+ Aggiungi dataset")
|
| 625 |
|
| 626 |
num_samples = gr.Slider(
|
| 627 |
minimum=10,
|
| 628 |
maximum=200,
|
| 629 |
step=10,
|
| 630 |
value=DEFAULT_NUM_SAMPLES,
|
| 631 |
+
label="Numero di esempi per dataset",
|
| 632 |
)
|
| 633 |
|
| 634 |
run_button = gr.Button("🚀 Esegui benchmark", variant="primary")
|
|
|
|
| 637 |
results_df = gr.Dataframe(
|
| 638 |
headers=[
|
| 639 |
"model_name",
|
| 640 |
+
"dataset",
|
| 641 |
"num_samples",
|
| 642 |
"accuracy",
|
| 643 |
"avg_time_per_sample_sec",
|
|
|
|
| 648 |
)
|
| 649 |
logs_box = gr.Textbox(
|
| 650 |
label="Log esecuzione",
|
| 651 |
+
lines=25,
|
| 652 |
interactive=False,
|
| 653 |
)
|
| 654 |
|
| 655 |
+
# Logica "+ Aggiungi modello"
|
| 656 |
def on_add_model(model_count):
|
| 657 |
new_count = add_model_field(model_count)
|
| 658 |
visibility_updates = get_visible_textboxes(new_count)
|
| 659 |
return [new_count] + visibility_updates
|
| 660 |
|
| 661 |
+
add_model_button.click(
|
| 662 |
fn=on_add_model,
|
| 663 |
inputs=[model_count_state],
|
| 664 |
outputs=[model_count_state, model_1, model_2, model_3, model_4, model_5],
|
| 665 |
)
|
| 666 |
|
| 667 |
+
# Logica "+ Aggiungi dataset"
|
| 668 |
+
def on_add_dataset(dataset_count):
|
| 669 |
+
new_count = add_dataset_field(dataset_count)
|
| 670 |
+
visibility_updates = get_visible_datasets(new_count)
|
| 671 |
+
return [new_count] + visibility_updates
|
| 672 |
+
|
| 673 |
+
add_dataset_button.click(
|
| 674 |
+
fn=on_add_dataset,
|
| 675 |
+
inputs=[dataset_count_state],
|
| 676 |
+
outputs=[dataset_count_state, dataset_1, dataset_2, dataset_3, dataset_4, dataset_5],
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
# Logica "Esegui benchmark"
|
| 680 |
run_button.click(
|
| 681 |
fn=run_benchmark_ui,
|
| 682 |
inputs=[
|
|
|
|
| 686 |
model_4,
|
| 687 |
model_5,
|
| 688 |
model_count_state,
|
| 689 |
+
dataset_1,
|
| 690 |
+
dataset_2,
|
| 691 |
+
dataset_3,
|
| 692 |
+
dataset_4,
|
| 693 |
+
dataset_5,
|
| 694 |
+
dataset_count_state,
|
| 695 |
num_samples,
|
| 696 |
],
|
| 697 |
outputs=[results_df, logs_box],
|