|
|
""" |
|
|
SPARKNET - AI-Powered Technology Transfer Office (TTO) Automation Platform |
|
|
|
|
|
A comprehensive Streamlit-based platform for research valorization and IP management: |
|
|
|
|
|
CORE TTO SCENARIOS: |
|
|
1. Patent Wake-Up: Transform dormant patents into commercialization opportunities |
|
|
2. Agreement Safety: AI-assisted legal document review with risk detection |
|
|
3. Partner Matching: Intelligent stakeholder matching for technology transfer |
|
|
4. License Compliance Monitoring: Payment tracking, milestone verification, revenue alerts |
|
|
5. Award Identification: Funding opportunity scanning and nomination assistance |
|
|
|
|
|
FEATURES: |
|
|
- Multi-agent AI orchestration with CriticAgent validation |
|
|
- Document Intelligence with evidence grounding |
|
|
- RAG-powered search and Q&A with source verification |
|
|
- Confidence scoring and hallucination mitigation |
|
|
- Human-in-the-loop decision points |
|
|
- GDPR-compliant data handling options |
|
|
|
|
|
VISTA/Horizon EU Project - Supporting European research valorization |
|
|
""" |
|
|
|
|
|
import streamlit as st |
|
|
import sys |
|
|
import os |
|
|
from pathlib import Path |
|
|
import json |
|
|
import time |
|
|
from datetime import datetime |
|
|
|
|
|
|
|
|
PROJECT_ROOT = Path(__file__).parent.parent |
|
|
sys.path.insert(0, str(PROJECT_ROOT)) |
|
|
|
|
|
|
|
|
st.set_page_config( |
|
|
page_title="SPARKNET - TTO Automation Platform", |
|
|
page_icon="π₯", |
|
|
layout="wide", |
|
|
initial_sidebar_state="expanded", |
|
|
menu_items={ |
|
|
'About': "SPARKNET: AI-Powered Technology Transfer Office Automation\n\nVISTA/Horizon EU Project" |
|
|
} |
|
|
) |
|
|
|
|
|
|
|
|
from auth import check_password, show_logout_button |
|
|
|
|
|
if not check_password(): |
|
|
st.stop() |
|
|
|
|
|
|
|
|
show_logout_button() |
|
|
|
|
|
|
|
|
st.markdown(""" |
|
|
<style> |
|
|
.main-header { |
|
|
font-size: 2.5rem; |
|
|
font-weight: bold; |
|
|
background: linear-gradient(90deg, #FF6B6B, #4ECDC4); |
|
|
-webkit-background-clip: text; |
|
|
-webkit-text-fill-color: transparent; |
|
|
margin-bottom: 0.5rem; |
|
|
} |
|
|
.sub-header { |
|
|
color: #666; |
|
|
font-size: 1.1rem; |
|
|
margin-bottom: 2rem; |
|
|
} |
|
|
.metric-card { |
|
|
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); |
|
|
border-radius: 10px; |
|
|
padding: 1rem; |
|
|
color: white; |
|
|
} |
|
|
.evidence-box { |
|
|
background-color: #f0f7ff; |
|
|
border-left: 4px solid #4ECDC4; |
|
|
padding: 1rem; |
|
|
margin: 0.5rem 0; |
|
|
border-radius: 0 8px 8px 0; |
|
|
} |
|
|
.chunk-card { |
|
|
background-color: #fafafa; |
|
|
border: 1px solid #e0e0e0; |
|
|
border-radius: 8px; |
|
|
padding: 1rem; |
|
|
margin: 0.5rem 0; |
|
|
} |
|
|
.confidence-high { color: #22c55e; font-weight: bold; } |
|
|
.confidence-medium { color: #eab308; font-weight: bold; } |
|
|
.confidence-low { color: #ef4444; font-weight: bold; } |
|
|
.stTabs [data-baseweb="tab-list"] { |
|
|
gap: 8px; |
|
|
} |
|
|
.stTabs [data-baseweb="tab"] { |
|
|
padding: 10px 20px; |
|
|
background-color: #f0f2f6; |
|
|
border-radius: 8px; |
|
|
} |
|
|
/* Coverage badges */ |
|
|
.coverage-full { |
|
|
background: linear-gradient(135deg, #22c55e 0%, #16a34a 100%); |
|
|
color: white; |
|
|
padding: 0.3rem 0.8rem; |
|
|
border-radius: 20px; |
|
|
font-size: 0.75rem; |
|
|
font-weight: bold; |
|
|
} |
|
|
.coverage-partial { |
|
|
background: linear-gradient(135deg, #eab308 0%, #ca8a04 100%); |
|
|
color: white; |
|
|
padding: 0.3rem 0.8rem; |
|
|
border-radius: 20px; |
|
|
font-size: 0.75rem; |
|
|
font-weight: bold; |
|
|
} |
|
|
.coverage-none { |
|
|
background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%); |
|
|
color: white; |
|
|
padding: 0.3rem 0.8rem; |
|
|
border-radius: 20px; |
|
|
font-size: 0.75rem; |
|
|
font-weight: bold; |
|
|
} |
|
|
/* EU/VISTA badges */ |
|
|
.eu-badge { |
|
|
background: linear-gradient(135deg, #003399 0%, #0052cc 100%); |
|
|
color: #ffcc00; |
|
|
padding: 0.4rem 1rem; |
|
|
border-radius: 8px; |
|
|
font-size: 0.8rem; |
|
|
font-weight: bold; |
|
|
display: inline-block; |
|
|
margin: 0.2rem; |
|
|
} |
|
|
.vista-badge { |
|
|
background: linear-gradient(135deg, #7c3aed 0%, #a855f7 100%); |
|
|
color: white; |
|
|
padding: 0.4rem 1rem; |
|
|
border-radius: 8px; |
|
|
font-size: 0.8rem; |
|
|
font-weight: bold; |
|
|
display: inline-block; |
|
|
margin: 0.2rem; |
|
|
} |
|
|
/* Scenario cards */ |
|
|
.scenario-card { |
|
|
background: white; |
|
|
border: 1px solid #e5e7eb; |
|
|
border-radius: 12px; |
|
|
padding: 1.2rem; |
|
|
margin: 0.5rem 0; |
|
|
box-shadow: 0 2px 4px rgba(0,0,0,0.05); |
|
|
transition: transform 0.2s, box-shadow 0.2s; |
|
|
} |
|
|
.scenario-card:hover { |
|
|
transform: translateY(-2px); |
|
|
box-shadow: 0 4px 12px rgba(0,0,0,0.1); |
|
|
} |
|
|
/* Validation indicator */ |
|
|
.validation-indicator { |
|
|
display: inline-flex; |
|
|
align-items: center; |
|
|
gap: 0.5rem; |
|
|
padding: 0.3rem 0.8rem; |
|
|
border-radius: 6px; |
|
|
font-size: 0.85rem; |
|
|
} |
|
|
.validation-pass { |
|
|
background: #dcfce7; |
|
|
color: #166534; |
|
|
} |
|
|
.validation-warn { |
|
|
background: #fef3c7; |
|
|
color: #92400e; |
|
|
} |
|
|
.validation-fail { |
|
|
background: #fecaca; |
|
|
color: #991b1b; |
|
|
} |
|
|
/* Human-in-the-loop button */ |
|
|
.hitl-prompt { |
|
|
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%); |
|
|
border: 2px solid #f59e0b; |
|
|
border-radius: 8px; |
|
|
padding: 1rem; |
|
|
margin: 1rem 0; |
|
|
} |
|
|
</style> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
def get_sample_documents(): |
|
|
"""Get list of sample documents from Dataset folder.""" |
|
|
dataset_path = PROJECT_ROOT / "Dataset" |
|
|
if dataset_path.exists(): |
|
|
return sorted([f.name for f in dataset_path.glob("*.pdf")]) |
|
|
return [] |
|
|
|
|
|
|
|
|
def format_confidence(confidence: float) -> str: |
|
|
"""Format confidence with color coding.""" |
|
|
if confidence >= 0.8: |
|
|
return f'<span class="confidence-high">{confidence:.1%}</span>' |
|
|
elif confidence >= 0.6: |
|
|
return f'<span class="confidence-medium">{confidence:.1%}</span>' |
|
|
else: |
|
|
return f'<span class="confidence-low">{confidence:.1%}</span>' |
|
|
|
|
|
|
|
|
def render_critic_validation(validation_result: dict) -> None: |
|
|
""" |
|
|
Render CriticAgent validation results in the UI. |
|
|
|
|
|
Displays validation scores, issues, and suggestions |
|
|
with clear visual indicators. |
|
|
""" |
|
|
overall_score = validation_result.get("overall_score", 0.0) |
|
|
is_valid = validation_result.get("valid", False) |
|
|
dimension_scores = validation_result.get("dimension_scores", {}) |
|
|
issues = validation_result.get("issues", []) |
|
|
suggestions = validation_result.get("suggestions", []) |
|
|
|
|
|
|
|
|
if is_valid and overall_score >= 0.85: |
|
|
status_class = "validation-pass" |
|
|
status_icon = "β" |
|
|
status_text = "Validated" |
|
|
elif overall_score >= 0.6: |
|
|
status_class = "validation-warn" |
|
|
status_icon = "β " |
|
|
status_text = "Review Recommended" |
|
|
else: |
|
|
status_class = "validation-fail" |
|
|
status_icon = "β" |
|
|
status_text = "Validation Failed" |
|
|
|
|
|
st.markdown(f""" |
|
|
<div style="background: #f8fafc; border-radius: 12px; padding: 1rem; margin: 1rem 0; border: 1px solid #e2e8f0;"> |
|
|
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 1rem;"> |
|
|
<h4 style="margin: 0;">π‘οΈ CriticAgent Validation</h4> |
|
|
<span class="validation-indicator {status_class}">{status_icon} {status_text}</span> |
|
|
</div> |
|
|
<div style="display: flex; gap: 1rem; flex-wrap: wrap;"> |
|
|
<div style="flex: 1; min-width: 200px;"> |
|
|
<strong>Overall Score</strong> |
|
|
<div style="font-size: 2rem; font-weight: bold; color: {'#22c55e' if overall_score >= 0.8 else '#eab308' if overall_score >= 0.6 else '#ef4444'};"> |
|
|
{overall_score:.0%} |
|
|
</div> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
if dimension_scores: |
|
|
st.markdown("**Quality Dimensions:**") |
|
|
cols = st.columns(len(dimension_scores)) |
|
|
for i, (dim, score) in enumerate(dimension_scores.items()): |
|
|
with cols[i]: |
|
|
st.metric( |
|
|
dim.replace("_", " ").title(), |
|
|
f"{score:.0%}", |
|
|
delta=None, |
|
|
) |
|
|
|
|
|
|
|
|
if issues: |
|
|
with st.expander("β οΈ Issues Found", expanded=len(issues) <= 3): |
|
|
for issue in issues: |
|
|
st.markdown(f"- {issue}") |
|
|
|
|
|
|
|
|
if suggestions: |
|
|
with st.expander("π‘ Improvement Suggestions"): |
|
|
for suggestion in suggestions: |
|
|
st.markdown(f"- {suggestion}") |
|
|
|
|
|
st.markdown("</div></div>", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
def render_source_verification(sources: list, claim: str = "") -> None: |
|
|
""" |
|
|
Render source verification for hallucination mitigation. |
|
|
|
|
|
Shows the sources used to generate AI responses with |
|
|
verification status. |
|
|
""" |
|
|
st.markdown(""" |
|
|
<div style="background: #f0fdf4; border-radius: 8px; padding: 1rem; border: 1px solid #bbf7d0;"> |
|
|
<h5 style="margin: 0 0 0.5rem 0;">π Source Verification</h5> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
if sources: |
|
|
verified_count = sum(1 for s in sources if s.get("verified", False)) |
|
|
total_count = len(sources) |
|
|
|
|
|
st.markdown(f""" |
|
|
<div style="margin-bottom: 0.5rem;"> |
|
|
<span style="color: #166534;">β {verified_count}/{total_count} sources verified</span> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
for i, source in enumerate(sources[:5]): |
|
|
verified = source.get("verified", False) |
|
|
page = source.get("page", "N/A") |
|
|
snippet = source.get("snippet", "")[:100] |
|
|
confidence = source.get("confidence", 0.0) |
|
|
|
|
|
st.markdown(f""" |
|
|
<div style="background: white; border-radius: 4px; padding: 0.5rem; margin: 0.3rem 0; border-left: 3px solid {'#22c55e' if verified else '#eab308'};"> |
|
|
<small> |
|
|
<strong>[{i+1}]</strong> Page {page} | Confidence: {confidence:.0%} |
|
|
{' β' if verified else ' β '} |
|
|
<br> |
|
|
<em>"{snippet}..."</em> |
|
|
</small> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
else: |
|
|
st.markdown(""" |
|
|
<p style="color: #666; margin: 0;">No source verification available for this response.</p> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("</div>", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
def render_human_decision_point( |
|
|
question: str, |
|
|
options: list, |
|
|
ai_recommendation: str = None, |
|
|
ai_confidence: float = None, |
|
|
) -> str: |
|
|
""" |
|
|
Render a human-in-the-loop decision point. |
|
|
|
|
|
Shows AI recommendation but requires human approval |
|
|
for critical decisions. |
|
|
|
|
|
Returns: |
|
|
Selected option from human |
|
|
""" |
|
|
st.markdown(""" |
|
|
<div class="hitl-prompt"> |
|
|
<h4 style="margin: 0 0 0.5rem 0;">π€ Human Decision Required</h4> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(f"**{question}**") |
|
|
|
|
|
if ai_recommendation and ai_confidence: |
|
|
st.markdown(f""" |
|
|
<div style="background: white; border-radius: 4px; padding: 0.5rem; margin: 0.5rem 0;"> |
|
|
<small> |
|
|
<strong>AI Recommendation:</strong> {ai_recommendation} |
|
|
(Confidence: {ai_confidence:.0%}) |
|
|
</small> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
selected = st.radio( |
|
|
"Your decision:", |
|
|
options, |
|
|
label_visibility="collapsed", |
|
|
key=f"hitl_{hash(question)}", |
|
|
) |
|
|
|
|
|
st.markdown("</div>", unsafe_allow_html=True) |
|
|
|
|
|
return selected |
|
|
|
|
|
|
|
|
def render_confidence_indicator(confidence: float, label: str = "Confidence") -> None: |
|
|
""" |
|
|
Render a visual confidence indicator. |
|
|
|
|
|
Shows confidence as a progress bar with color coding. |
|
|
""" |
|
|
if confidence >= 0.8: |
|
|
color = "#22c55e" |
|
|
status = "High" |
|
|
elif confidence >= 0.6: |
|
|
color = "#eab308" |
|
|
status = "Medium" |
|
|
else: |
|
|
color = "#ef4444" |
|
|
status = "Low" |
|
|
|
|
|
st.markdown(f""" |
|
|
<div style="margin: 0.5rem 0;"> |
|
|
<div style="display: flex; justify-content: space-between; margin-bottom: 0.3rem;"> |
|
|
<small><strong>{label}</strong></small> |
|
|
<small style="color: {color};">{status} ({confidence:.0%})</small> |
|
|
</div> |
|
|
<div style="background: #e5e7eb; border-radius: 4px; height: 8px; overflow: hidden;"> |
|
|
<div style="background: {color}; width: {confidence*100}%; height: 100%;"></div> |
|
|
</div> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
def render_header(): |
|
|
"""Render the main header with TTO branding and EU badges.""" |
|
|
col1, col2 = st.columns([3, 1]) |
|
|
with col1: |
|
|
st.markdown('<div class="main-header">π₯ SPARKNET</div>', unsafe_allow_html=True) |
|
|
st.markdown('<div class="sub-header">AI-Powered Technology Transfer Office Automation Platform</div>', unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(''' |
|
|
<div style="margin-top: 0.5rem;"> |
|
|
<span class="vista-badge">VISTA Project</span> |
|
|
<span class="eu-badge">Horizon EU</span> |
|
|
</div> |
|
|
''', unsafe_allow_html=True) |
|
|
with col2: |
|
|
st.markdown(''' |
|
|
<div style="text-align: right;"> |
|
|
<img src="https://img.shields.io/badge/version-1.0.0-blue" style="margin: 2px;"> |
|
|
<br> |
|
|
<img src="https://img.shields.io/badge/scenarios-5-green" style="margin: 2px;"> |
|
|
<br> |
|
|
<img src="https://img.shields.io/badge/status-production-success" style="margin: 2px;"> |
|
|
</div> |
|
|
''', unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
def render_sidebar(): |
|
|
"""Render the sidebar with navigation.""" |
|
|
with st.sidebar: |
|
|
st.markdown("## Navigation") |
|
|
|
|
|
page = st.radio( |
|
|
"Select Feature", |
|
|
[ |
|
|
"π Home", |
|
|
"π Document Processing", |
|
|
"π Field Extraction", |
|
|
"π¬ RAG Q&A", |
|
|
"π·οΈ Classification", |
|
|
"π Analytics", |
|
|
], |
|
|
label_visibility="collapsed", |
|
|
) |
|
|
|
|
|
st.markdown("---") |
|
|
st.markdown("### System Status") |
|
|
|
|
|
|
|
|
ollama_status = check_ollama_status() |
|
|
st.markdown(f"**Ollama:** {'π’ Online' if ollama_status else 'π΄ Offline'}") |
|
|
|
|
|
chromadb_status = check_chromadb_status() |
|
|
st.markdown(f"**ChromaDB:** {'π’ Ready' if chromadb_status else 'π΄ Not initialized'}") |
|
|
|
|
|
st.markdown("---") |
|
|
st.markdown("### Sample Documents") |
|
|
docs = get_sample_documents() |
|
|
st.markdown(f"**Available:** {len(docs)} PDFs") |
|
|
|
|
|
return page |
|
|
|
|
|
|
|
|
def check_ollama_status(): |
|
|
"""Check if Ollama is running.""" |
|
|
try: |
|
|
import httpx |
|
|
with httpx.Client(timeout=2.0) as client: |
|
|
resp = client.get("http://localhost:11434/api/tags") |
|
|
return resp.status_code == 200 |
|
|
except: |
|
|
return False |
|
|
|
|
|
|
|
|
def check_chromadb_status(): |
|
|
"""Check if ChromaDB is available.""" |
|
|
try: |
|
|
import chromadb |
|
|
return True |
|
|
except: |
|
|
return False |
|
|
|
|
|
|
|
|
def render_home_page(): |
|
|
"""Render the TTO dashboard home page with scenarios and coverage metrics.""" |
|
|
st.markdown("## Technology Transfer Office Dashboard") |
|
|
|
|
|
st.markdown(""" |
|
|
SPARKNET is a comprehensive **AI-Powered Technology Transfer Office (TTO) Automation Platform** |
|
|
designed for research valorization and IP management. Built for the VISTA/Horizon EU project, |
|
|
it combines multi-agent AI orchestration with document intelligence to automate key TTO workflows. |
|
|
""") |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.markdown("### π TTO Task Coverage Dashboard") |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
|
|
with col1: |
|
|
st.markdown(""" |
|
|
<div style="background: linear-gradient(135deg, #22c55e 0%, #16a34a 100%); |
|
|
border-radius: 12px; padding: 1.5rem; color: white; text-align: center;"> |
|
|
<h1 style="margin: 0; font-size: 3rem;">3</h1> |
|
|
<h4 style="margin: 0.5rem 0;">Fully Covered</h4> |
|
|
<p style="font-size: 0.85rem; opacity: 0.9;">Production-ready scenarios</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col2: |
|
|
st.markdown(""" |
|
|
<div style="background: linear-gradient(135deg, #eab308 0%, #ca8a04 100%); |
|
|
border-radius: 12px; padding: 1.5rem; color: white; text-align: center;"> |
|
|
<h1 style="margin: 0; font-size: 3rem;">5</h1> |
|
|
<h4 style="margin: 0.5rem 0;">Partially Covered</h4> |
|
|
<p style="font-size: 0.85rem; opacity: 0.9;">In development</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col3: |
|
|
st.markdown(""" |
|
|
<div style="background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%); |
|
|
border-radius: 12px; padding: 1.5rem; color: white; text-align: center;"> |
|
|
<h1 style="margin: 0; font-size: 3rem;">2</h1> |
|
|
<h4 style="margin: 0.5rem 0;">Not Covered</h4> |
|
|
<p style="font-size: 0.85rem; opacity: 0.9;">Planned for future</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.markdown("### π― Core TTO Scenarios") |
|
|
|
|
|
|
|
|
st.markdown("#### Fully Implemented") |
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
|
|
with col1: |
|
|
st.markdown(""" |
|
|
<div class="scenario-card"> |
|
|
<div style="display: flex; justify-content: space-between; align-items: start;"> |
|
|
<h4 style="margin: 0;">π‘ Patent Wake-Up</h4> |
|
|
<span class="coverage-full">LIVE</span> |
|
|
</div> |
|
|
<p style="color: #666; margin: 0.5rem 0;">Transform dormant patents into commercialization opportunities</p> |
|
|
<hr style="margin: 0.8rem 0; opacity: 0.3;"> |
|
|
<small> |
|
|
<strong>Features:</strong><br> |
|
|
β’ TRL Assessment<br> |
|
|
β’ Market Analysis<br> |
|
|
β’ Partner Matching<br> |
|
|
β’ Valorization Brief Generation |
|
|
</small> |
|
|
<div style="margin-top: 0.8rem;"> |
|
|
<span class="vista-badge" style="font-size: 0.7rem; padding: 0.2rem 0.5rem;">VISTA Aligned</span> |
|
|
</div> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col2: |
|
|
st.markdown(""" |
|
|
<div class="scenario-card"> |
|
|
<div style="display: flex; justify-content: space-between; align-items: start;"> |
|
|
<h4 style="margin: 0;">βοΈ Agreement Safety</h4> |
|
|
<span class="coverage-full">LIVE</span> |
|
|
</div> |
|
|
<p style="color: #666; margin: 0.5rem 0;">AI-assisted legal document review with risk detection</p> |
|
|
<hr style="margin: 0.8rem 0; opacity: 0.3;"> |
|
|
<small> |
|
|
<strong>Features:</strong><br> |
|
|
β’ Risk Clause Detection<br> |
|
|
β’ GDPR Compliance Check<br> |
|
|
β’ Law 25 Alignment<br> |
|
|
β’ Remediation Suggestions |
|
|
</small> |
|
|
<div style="margin-top: 0.8rem;"> |
|
|
<span class="eu-badge" style="font-size: 0.7rem; padding: 0.2rem 0.5rem;">GDPR Ready</span> |
|
|
</div> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col3: |
|
|
st.markdown(""" |
|
|
<div class="scenario-card"> |
|
|
<div style="display: flex; justify-content: space-between; align-items: start;"> |
|
|
<h4 style="margin: 0;">π€ Partner Matching</h4> |
|
|
<span class="coverage-full">LIVE</span> |
|
|
</div> |
|
|
<p style="color: #666; margin: 0.5rem 0;">Intelligent stakeholder matching for technology transfer</p> |
|
|
<hr style="margin: 0.8rem 0; opacity: 0.3;"> |
|
|
<small> |
|
|
<strong>Features:</strong><br> |
|
|
β’ Multi-criteria Scoring<br> |
|
|
β’ Geographic Matching<br> |
|
|
β’ Technical Fit Analysis<br> |
|
|
β’ Outreach Recommendations |
|
|
</small> |
|
|
<div style="margin-top: 0.8rem;"> |
|
|
<span class="vista-badge" style="font-size: 0.7rem; padding: 0.2rem 0.5rem;">VISTA Aligned</span> |
|
|
</div> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
st.markdown("#### In Development") |
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
|
st.markdown(""" |
|
|
<div class="scenario-card" style="border-left: 4px solid #eab308;"> |
|
|
<div style="display: flex; justify-content: space-between; align-items: start;"> |
|
|
<h4 style="margin: 0;">π License Compliance Monitoring</h4> |
|
|
<span class="coverage-partial">DEV</span> |
|
|
</div> |
|
|
<p style="color: #666; margin: 0.5rem 0;">Track license agreements and ensure compliance</p> |
|
|
<hr style="margin: 0.8rem 0; opacity: 0.3;"> |
|
|
<small> |
|
|
<strong>Planned Features:</strong><br> |
|
|
β’ Payment Tracking & Alerts<br> |
|
|
β’ Milestone Verification<br> |
|
|
β’ Revenue Monitoring<br> |
|
|
β’ Compliance Reporting |
|
|
</small> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col2: |
|
|
st.markdown(""" |
|
|
<div class="scenario-card" style="border-left: 4px solid #eab308;"> |
|
|
<div style="display: flex; justify-content: space-between; align-items: start;"> |
|
|
<h4 style="margin: 0;">π Award Identification</h4> |
|
|
<span class="coverage-partial">DEV</span> |
|
|
</div> |
|
|
<p style="color: #666; margin: 0.5rem 0;">Discover funding opportunities and awards</p> |
|
|
<hr style="margin: 0.8rem 0; opacity: 0.3;"> |
|
|
<small> |
|
|
<strong>Planned Features:</strong><br> |
|
|
β’ Opportunity Scanning<br> |
|
|
β’ Nomination Assistance<br> |
|
|
β’ Deadline Tracking<br> |
|
|
β’ Application Support |
|
|
</small> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.markdown("### π‘οΈ AI Quality Assurance") |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
|
|
with col1: |
|
|
st.markdown(""" |
|
|
<div style="background: #f0f9ff; border-radius: 8px; padding: 1rem; border: 1px solid #bae6fd;"> |
|
|
<h4 style="margin: 0 0 0.5rem 0; color: #1e3a5f;">π CriticAgent Validation</h4> |
|
|
<p style="font-size: 0.9rem; margin: 0; color: #334155;">Every AI output is validated against VISTA quality standards with dimension-based scoring.</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col2: |
|
|
st.markdown(""" |
|
|
<div style="background: #f0fdf4; border-radius: 8px; padding: 1rem; border: 1px solid #bbf7d0;"> |
|
|
<h4 style="margin: 0 0 0.5rem 0; color: #14532d;">π Confidence Scoring</h4> |
|
|
<p style="font-size: 0.9rem; margin: 0; color: #334155;">All extractions include confidence scores with automatic abstention for low-confidence results.</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col3: |
|
|
st.markdown(""" |
|
|
<div style="background: #fefce8; border-radius: 8px; padding: 1rem; border: 1px solid #fef08a;"> |
|
|
<h4 style="margin: 0 0 0.5rem 0; color: #713f12;">π€ Human-in-the-Loop</h4> |
|
|
<p style="font-size: 0.9rem; margin: 0; color: #334155;">Critical decisions require human approval with clear decision points throughout workflows.</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.markdown("### π Platform Capabilities") |
|
|
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
|
|
|
|
with col1: |
|
|
st.markdown(""" |
|
|
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); |
|
|
border-radius: 12px; padding: 1.5rem; color: white; text-align: center;"> |
|
|
<h3 style="margin: 0;">π</h3> |
|
|
<h4 style="margin: 0.5rem 0;">Document Intelligence</h4> |
|
|
<p style="font-size: 0.85rem; opacity: 0.9;">OCR, Layout, Chunking</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col2: |
|
|
st.markdown(""" |
|
|
<div style="background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); |
|
|
border-radius: 12px; padding: 1.5rem; color: white; text-align: center;"> |
|
|
<h3 style="margin: 0;">π</h3> |
|
|
<h4 style="margin: 0.5rem 0;">Evidence Grounding</h4> |
|
|
<p style="font-size: 0.85rem; opacity: 0.9;">Source Verification</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col3: |
|
|
st.markdown(""" |
|
|
<div style="background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%); |
|
|
border-radius: 12px; padding: 1.5rem; color: white; text-align: center;"> |
|
|
<h3 style="margin: 0;">π¬</h3> |
|
|
<h4 style="margin: 0.5rem 0;">RAG Q&A</h4> |
|
|
<p style="font-size: 0.85rem; opacity: 0.9;">Grounded Citations</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col4: |
|
|
st.markdown(""" |
|
|
<div style="background: linear-gradient(135deg, #43e97b 0%, #38f9d7 100%); |
|
|
border-radius: 12px; padding: 1.5rem; color: white; text-align: center;"> |
|
|
<h3 style="margin: 0;">π€</h3> |
|
|
<h4 style="margin: 0.5rem 0;">Multi-Agent AI</h4> |
|
|
<p style="font-size: 0.85rem; opacity: 0.9;">Orchestrated Workflows</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
st.markdown("### π Quick Start Guide") |
|
|
|
|
|
with st.expander("Getting Started with SPARKNET", expanded=True): |
|
|
st.markdown(""" |
|
|
**For TTO Staff:** |
|
|
1. **Patent Wake-Up**: Upload a dormant patent to generate a valorization roadmap |
|
|
2. **Agreement Safety**: Upload contracts/agreements for AI-assisted risk review |
|
|
3. **Partner Matching**: Find suitable industry partners for your technologies |
|
|
|
|
|
**For Researchers:** |
|
|
1. **Document Processing**: Process research documents with OCR and extraction |
|
|
2. **RAG Q&A**: Ask questions about indexed documents |
|
|
3. **Evidence Viewer**: Verify AI responses with source grounding |
|
|
|
|
|
**Sample Documents**: The demo includes patent documents from major tech companies for testing. |
|
|
""") |
|
|
|
|
|
|
|
|
st.markdown("### π Sample Documents") |
|
|
docs = get_sample_documents() |
|
|
|
|
|
if docs: |
|
|
cols = st.columns(4) |
|
|
for i, doc in enumerate(docs[:8]): |
|
|
with cols[i % 4]: |
|
|
company = doc.split()[0] if doc else "Unknown" |
|
|
st.markdown(f""" |
|
|
<div style="background: #f8f9fa; border-radius: 8px; padding: 0.8rem; |
|
|
margin: 0.3rem 0; border: 1px solid #e0e0e0;"> |
|
|
<strong>π {company}</strong> |
|
|
<br><small style="color: #666;">{doc[:30]}...</small> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
def render_document_processing_page(): |
|
|
"""Render the document processing page.""" |
|
|
st.markdown("## π Document Processing Pipeline") |
|
|
|
|
|
st.markdown(""" |
|
|
Process documents through our intelligent pipeline: |
|
|
**OCR β Layout Detection β Reading Order β Semantic Chunking β Grounding** |
|
|
""") |
|
|
|
|
|
|
|
|
col1, col2 = st.columns([2, 1]) |
|
|
|
|
|
with col1: |
|
|
upload_option = st.radio( |
|
|
"Document Source", |
|
|
["Select from samples", "Upload new document"], |
|
|
horizontal=True, |
|
|
) |
|
|
|
|
|
if upload_option == "Select from samples": |
|
|
docs = get_sample_documents() |
|
|
if docs: |
|
|
selected_doc = st.selectbox("Select a document", docs) |
|
|
doc_path = PROJECT_ROOT / "Dataset" / selected_doc |
|
|
else: |
|
|
st.warning("No sample documents found") |
|
|
doc_path = None |
|
|
else: |
|
|
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"]) |
|
|
if uploaded_file: |
|
|
|
|
|
temp_path = PROJECT_ROOT / "data" / "temp" / uploaded_file.name |
|
|
temp_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
with open(temp_path, "wb") as f: |
|
|
f.write(uploaded_file.read()) |
|
|
doc_path = temp_path |
|
|
else: |
|
|
doc_path = None |
|
|
|
|
|
with col2: |
|
|
st.markdown("### Processing Options") |
|
|
ocr_engine = st.selectbox("OCR Engine", ["paddleocr", "tesseract"]) |
|
|
max_pages = st.slider("Max Pages", 1, 20, 5) |
|
|
render_dpi = st.selectbox("Render DPI", [150, 200, 300], index=2) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
if doc_path and st.button("π Process Document", type="primary"): |
|
|
process_document_demo(doc_path, ocr_engine, max_pages, render_dpi) |
|
|
|
|
|
|
|
|
def process_document_demo(doc_path, ocr_engine, max_pages, render_dpi): |
|
|
"""Demo document processing.""" |
|
|
|
|
|
progress_bar = st.progress(0) |
|
|
status_text = st.empty() |
|
|
|
|
|
|
|
|
stages = [ |
|
|
("Loading document...", 0.1), |
|
|
("Running OCR extraction...", 0.3), |
|
|
("Detecting layout regions...", 0.5), |
|
|
("Reconstructing reading order...", 0.7), |
|
|
("Creating semantic chunks...", 0.9), |
|
|
("Finalizing...", 1.0), |
|
|
] |
|
|
|
|
|
for stage_text, progress in stages: |
|
|
status_text.text(stage_text) |
|
|
progress_bar.progress(progress) |
|
|
time.sleep(0.5) |
|
|
|
|
|
status_text.text("β
Processing complete!") |
|
|
|
|
|
|
|
|
try: |
|
|
from src.document.pipeline import process_document, PipelineConfig |
|
|
from src.document.ocr import OCRConfig |
|
|
|
|
|
config = PipelineConfig( |
|
|
ocr=OCRConfig(engine=ocr_engine), |
|
|
render_dpi=render_dpi, |
|
|
max_pages=max_pages, |
|
|
) |
|
|
|
|
|
with st.spinner("Running actual document processing..."): |
|
|
result = process_document(str(doc_path), config=config) |
|
|
|
|
|
|
|
|
render_processing_results(result) |
|
|
|
|
|
except Exception as e: |
|
|
st.warning(f"Live processing unavailable: {e}") |
|
|
st.info("Showing demo results instead...") |
|
|
render_demo_processing_results(str(doc_path)) |
|
|
|
|
|
|
|
|
def render_processing_results(result): |
|
|
"""Render actual processing results.""" |
|
|
|
|
|
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
|
|
|
|
with col1: |
|
|
st.metric("Pages", result.metadata.num_pages) |
|
|
with col2: |
|
|
st.metric("Chunks", result.metadata.total_chunks) |
|
|
with col3: |
|
|
st.metric("Characters", f"{result.metadata.total_characters:,}") |
|
|
with col4: |
|
|
conf = result.metadata.ocr_confidence_avg or 0 |
|
|
st.metric("OCR Confidence", f"{conf:.1%}") |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["π Extracted Text", "π¦ Chunks", "πΊοΈ Layout"]) |
|
|
|
|
|
with tab1: |
|
|
st.markdown("### Full Extracted Text") |
|
|
st.text_area( |
|
|
"Document Text", |
|
|
result.full_text[:5000] + "..." if len(result.full_text) > 5000 else result.full_text, |
|
|
height=400, |
|
|
) |
|
|
|
|
|
with tab2: |
|
|
st.markdown("### Document Chunks") |
|
|
for i, chunk in enumerate(result.chunks[:10]): |
|
|
with st.expander(f"Chunk {i+1}: {chunk.chunk_type.value} (Page {chunk.page + 1})"): |
|
|
st.markdown(f"**ID:** `{chunk.chunk_id}`") |
|
|
st.markdown(f"**Confidence:** {format_confidence(chunk.confidence)}", unsafe_allow_html=True) |
|
|
st.markdown(f"**BBox:** ({chunk.bbox.x_min:.0f}, {chunk.bbox.y_min:.0f}) β ({chunk.bbox.x_max:.0f}, {chunk.bbox.y_max:.0f})") |
|
|
st.markdown("**Text:**") |
|
|
st.text(chunk.text[:500]) |
|
|
|
|
|
with tab3: |
|
|
st.markdown("### Layout Regions") |
|
|
if result.layout_regions: |
|
|
layout_data = [] |
|
|
for r in result.layout_regions: |
|
|
layout_data.append({ |
|
|
"Type": r.layout_type.value, |
|
|
"Page": r.page + 1, |
|
|
"Confidence": f"{r.confidence:.1%}", |
|
|
"Position": f"({r.bbox.x_min:.0f}, {r.bbox.y_min:.0f})", |
|
|
}) |
|
|
st.dataframe(layout_data, width='stretch') |
|
|
else: |
|
|
st.info("No layout regions detected") |
|
|
|
|
|
|
|
|
def render_demo_processing_results(doc_path): |
|
|
"""Render demo processing results when actual processing unavailable.""" |
|
|
|
|
|
doc_name = Path(doc_path).name |
|
|
|
|
|
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
|
|
|
|
with col1: |
|
|
st.metric("Pages", 12) |
|
|
with col2: |
|
|
st.metric("Chunks", 47) |
|
|
with col3: |
|
|
st.metric("Characters", "15,234") |
|
|
with col4: |
|
|
st.metric("OCR Confidence", "94.2%") |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
demo_chunks = [ |
|
|
{ |
|
|
"type": "title", |
|
|
"page": 1, |
|
|
"confidence": 0.98, |
|
|
"text": f"PATENT PLEDGE - {doc_name.split()[0]}", |
|
|
"bbox": "(100, 50) β (700, 100)", |
|
|
}, |
|
|
{ |
|
|
"type": "text", |
|
|
"page": 1, |
|
|
"confidence": 0.95, |
|
|
"text": "This Patent Pledge is made by the undersigned company to promote innovation and reduce patent-related barriers...", |
|
|
"bbox": "(100, 150) β (700, 300)", |
|
|
}, |
|
|
{ |
|
|
"type": "text", |
|
|
"page": 1, |
|
|
"confidence": 0.92, |
|
|
"text": "The company hereby pledges not to assert any patent claims against any party making, using, or selling products...", |
|
|
"bbox": "(100, 320) β (700, 500)", |
|
|
}, |
|
|
] |
|
|
|
|
|
tab1, tab2 = st.tabs(["π Extracted Text", "π¦ Chunks"]) |
|
|
|
|
|
with tab1: |
|
|
st.markdown("### Full Extracted Text") |
|
|
demo_text = f""" |
|
|
PATENT PLEDGE - {doc_name.split()[0]} |
|
|
|
|
|
This Patent Pledge is made by the undersigned company to promote innovation |
|
|
and reduce patent-related barriers in the technology industry. |
|
|
|
|
|
DEFINITIONS: |
|
|
1. "Covered Patents" means all patents and patent applications owned by |
|
|
the Pledgor that cover fundamental technologies. |
|
|
2. "Open Source Software" means software distributed under licenses |
|
|
approved by the Open Source Initiative. |
|
|
|
|
|
PLEDGE: |
|
|
The company hereby pledges not to assert any Covered Patents against |
|
|
any party making, using, selling, or distributing Open Source Software. |
|
|
|
|
|
This pledge is irrevocable and shall remain in effect for the life |
|
|
of all Covered Patents. |
|
|
|
|
|
[Document continues with legal terms and conditions...] |
|
|
""" |
|
|
st.text_area("Document Text", demo_text, height=400) |
|
|
|
|
|
with tab2: |
|
|
st.markdown("### Document Chunks") |
|
|
for i, chunk in enumerate(demo_chunks): |
|
|
with st.expander(f"Chunk {i+1}: {chunk['type']} (Page {chunk['page']})"): |
|
|
st.markdown(f"**Confidence:** {format_confidence(chunk['confidence'])}", unsafe_allow_html=True) |
|
|
st.markdown(f"**BBox:** {chunk['bbox']}") |
|
|
st.markdown("**Text:**") |
|
|
st.text(chunk["text"]) |
|
|
|
|
|
|
|
|
def render_extraction_page(): |
|
|
"""Render the field extraction page.""" |
|
|
st.markdown("## π Field Extraction with Evidence") |
|
|
|
|
|
st.markdown(""" |
|
|
Extract structured fields from documents with **evidence grounding**. |
|
|
Every extracted value includes its source location (page, bbox, chunk_id). |
|
|
""") |
|
|
|
|
|
col1, col2 = st.columns([2, 1]) |
|
|
|
|
|
with col1: |
|
|
|
|
|
docs = get_sample_documents() |
|
|
if docs: |
|
|
selected_doc = st.selectbox("Select Document", docs, key="extract_doc") |
|
|
|
|
|
st.markdown("### Fields to Extract") |
|
|
|
|
|
|
|
|
schema_type = st.selectbox( |
|
|
"Extraction Schema", |
|
|
["Patent/Legal Document", "Invoice", "Contract", "Custom"], |
|
|
) |
|
|
|
|
|
if schema_type == "Patent/Legal Document": |
|
|
default_fields = ["document_title", "company_name", "effective_date", "key_terms", "parties_involved"] |
|
|
elif schema_type == "Invoice": |
|
|
default_fields = ["invoice_number", "date", "total_amount", "vendor_name", "line_items"] |
|
|
elif schema_type == "Contract": |
|
|
default_fields = ["contract_title", "parties", "effective_date", "term_length", "key_obligations"] |
|
|
else: |
|
|
default_fields = ["field_1", "field_2"] |
|
|
|
|
|
fields = st.multiselect( |
|
|
"Select fields to extract", |
|
|
default_fields, |
|
|
default=default_fields[:3], |
|
|
) |
|
|
|
|
|
with col2: |
|
|
st.markdown("### Extraction Options") |
|
|
validate = st.checkbox("Validate with Critic", value=True) |
|
|
include_evidence = st.checkbox("Include Evidence", value=True) |
|
|
confidence_threshold = st.slider("Min Confidence", 0.0, 1.0, 0.7) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
if fields and st.button("π Extract Fields", type="primary"): |
|
|
extract_fields_demo(selected_doc, fields, validate, include_evidence) |
|
|
|
|
|
|
|
|
def extract_fields_demo(doc_name, fields, validate, include_evidence): |
|
|
"""Demo field extraction.""" |
|
|
|
|
|
with st.spinner("Extracting fields..."): |
|
|
time.sleep(1.5) |
|
|
|
|
|
st.success("β
Extraction complete!") |
|
|
|
|
|
|
|
|
company = doc_name.split()[0] if doc_name else "Company" |
|
|
|
|
|
demo_extractions = { |
|
|
"document_title": { |
|
|
"value": f"{company} Patent Non-Assertion Pledge", |
|
|
"confidence": 0.96, |
|
|
"page": 1, |
|
|
"evidence": f"Found in header: '{company} Patent Non-Assertion Pledge' at position (100, 50)", |
|
|
}, |
|
|
"company_name": { |
|
|
"value": company, |
|
|
"confidence": 0.98, |
|
|
"page": 1, |
|
|
"evidence": f"Identified as pledgor: '{company}' mentioned 15 times throughout document", |
|
|
}, |
|
|
"effective_date": { |
|
|
"value": doc_name.split()[-1].replace(".pdf", "") if len(doc_name.split()) > 1 else "N/A", |
|
|
"confidence": 0.85, |
|
|
"page": 1, |
|
|
"evidence": "Date found in document header", |
|
|
}, |
|
|
"key_terms": { |
|
|
"value": "Patent pledge, Open source, Non-assertion, Royalty-free", |
|
|
"confidence": 0.89, |
|
|
"page": 2, |
|
|
"evidence": "Key terms identified from definitions section", |
|
|
}, |
|
|
"parties_involved": { |
|
|
"value": f"{company}, Open Source Community", |
|
|
"confidence": 0.82, |
|
|
"page": 1, |
|
|
"evidence": "Parties identified from pledge declaration", |
|
|
}, |
|
|
} |
|
|
|
|
|
|
|
|
st.markdown("### Extracted Fields") |
|
|
|
|
|
for field in fields: |
|
|
if field in demo_extractions: |
|
|
data = demo_extractions[field] |
|
|
|
|
|
col1, col2 = st.columns([3, 1]) |
|
|
|
|
|
with col1: |
|
|
st.markdown(f""" |
|
|
<div class="chunk-card"> |
|
|
<strong>{field.replace('_', ' ').title()}</strong> |
|
|
<p style="font-size: 1.2rem; margin: 0.5rem 0;">{data['value']}</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col2: |
|
|
st.markdown(f"**Confidence:** {format_confidence(data['confidence'])}", unsafe_allow_html=True) |
|
|
st.markdown(f"**Page:** {data['page']}") |
|
|
|
|
|
if include_evidence: |
|
|
st.markdown(f""" |
|
|
<div class="evidence-box"> |
|
|
π <strong>Evidence:</strong> {data['evidence']} |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("") |
|
|
|
|
|
|
|
|
if validate: |
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
demo_validation = { |
|
|
"valid": True, |
|
|
"overall_score": 0.87, |
|
|
"dimension_scores": { |
|
|
"completeness": 0.92, |
|
|
"clarity": 0.88, |
|
|
"accuracy": 0.85, |
|
|
"actionability": 0.82, |
|
|
}, |
|
|
"issues": [ |
|
|
"Effective date confidence is below threshold (0.85)", |
|
|
], |
|
|
"suggestions": [ |
|
|
"Consider manual verification of the effective date", |
|
|
"Cross-reference parties with external sources", |
|
|
], |
|
|
} |
|
|
|
|
|
render_critic_validation(demo_validation) |
|
|
|
|
|
|
|
|
demo_sources = [ |
|
|
{"page": 1, "snippet": "PATENT PLEDGE - This Patent Pledge is made by...", "verified": True, "confidence": 0.95}, |
|
|
{"page": 1, "snippet": "The company hereby pledges not to assert...", "verified": True, "confidence": 0.91}, |
|
|
{"page": 2, "snippet": "Covered Patents means all patents...", "verified": True, "confidence": 0.88}, |
|
|
] |
|
|
|
|
|
render_source_verification(demo_sources, "Patent pledge document analysis") |
|
|
|
|
|
|
|
|
render_confidence_indicator(0.89, "Extraction Confidence") |
|
|
|
|
|
|
|
|
def render_rag_page(): |
|
|
"""Render the RAG Q&A page.""" |
|
|
st.markdown("## π¬ RAG Question Answering") |
|
|
|
|
|
st.markdown(""" |
|
|
Ask questions about indexed documents. Answers include **citations** pointing to |
|
|
the exact source chunks with page numbers and text snippets. |
|
|
""") |
|
|
|
|
|
|
|
|
col1, col2 = st.columns([2, 1]) |
|
|
|
|
|
with col1: |
|
|
st.markdown("### Ask a Question") |
|
|
|
|
|
|
|
|
preset_questions = [ |
|
|
"What is the main purpose of this document?", |
|
|
"What patents are covered by this pledge?", |
|
|
"What are the key terms and definitions?", |
|
|
"Who are the parties involved?", |
|
|
"What are the conditions for the pledge?", |
|
|
] |
|
|
|
|
|
question_mode = st.radio( |
|
|
"Question Mode", |
|
|
["Select preset", "Custom question"], |
|
|
horizontal=True, |
|
|
) |
|
|
|
|
|
if question_mode == "Select preset": |
|
|
question = st.selectbox("Select a question", preset_questions) |
|
|
else: |
|
|
question = st.text_input("Enter your question") |
|
|
|
|
|
col_a, col_b = st.columns(2) |
|
|
with col_a: |
|
|
top_k = st.slider("Number of sources", 1, 10, 5) |
|
|
with col_b: |
|
|
show_confidence = st.checkbox("Show confidence scores", value=True) |
|
|
|
|
|
with col2: |
|
|
st.markdown("### Index Status") |
|
|
st.markdown(""" |
|
|
- **Documents indexed:** 3 |
|
|
- **Total chunks:** 147 |
|
|
- **Embedding model:** nomic-embed-text |
|
|
- **Vector dimension:** 768 |
|
|
""") |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
if question and st.button("π Get Answer", type="primary"): |
|
|
rag_query_demo(question, top_k, show_confidence) |
|
|
|
|
|
|
|
|
def rag_query_demo(question, top_k, show_confidence): |
|
|
"""Demo RAG query.""" |
|
|
|
|
|
with st.spinner("Searching documents and generating answer..."): |
|
|
time.sleep(1.5) |
|
|
|
|
|
|
|
|
demo_answers = { |
|
|
"purpose": { |
|
|
"answer": "The main purpose of this document is to establish a **Patent Non-Assertion Pledge** where the company commits not to assert certain patent claims against parties using, making, or distributing Open Source Software. This pledge aims to promote innovation and reduce patent-related barriers in the technology industry.", |
|
|
"confidence": 0.92, |
|
|
"citations": [ |
|
|
{"index": 1, "page": 1, "snippet": "This Patent Pledge is made to promote innovation and reduce patent-related barriers...", "confidence": 0.95}, |
|
|
{"index": 2, "page": 1, "snippet": "The company hereby pledges not to assert any patent claims against any party...", "confidence": 0.91}, |
|
|
], |
|
|
}, |
|
|
"patents": { |
|
|
"answer": "The pledge covers **all patents and patent applications** owned by the Pledgor that relate to fundamental technologies used in Open Source Software. Specifically, these are referred to as 'Covered Patents' in the document, defined as patents that cover essential features or functionalities.", |
|
|
"confidence": 0.88, |
|
|
"citations": [ |
|
|
{"index": 1, "page": 2, "snippet": "'Covered Patents' means all patents and patent applications owned by the Pledgor...", "confidence": 0.93}, |
|
|
{"index": 2, "page": 2, "snippet": "Patents covering fundamental technologies essential to Open Source implementations...", "confidence": 0.85}, |
|
|
], |
|
|
}, |
|
|
"default": { |
|
|
"answer": "Based on the available documents, this appears to be a **Patent Pledge** document from a major technology company. The document establishes terms for patent non-assertion related to Open Source Software, with specific definitions and conditions outlined in the legal text.", |
|
|
"confidence": 0.75, |
|
|
"citations": [ |
|
|
{"index": 1, "page": 1, "snippet": "Patent Pledge document establishing non-assertion terms...", "confidence": 0.80}, |
|
|
], |
|
|
}, |
|
|
} |
|
|
|
|
|
|
|
|
if "purpose" in question.lower() or "main" in question.lower(): |
|
|
result = demo_answers["purpose"] |
|
|
elif "patent" in question.lower() and "cover" in question.lower(): |
|
|
result = demo_answers["patents"] |
|
|
else: |
|
|
result = demo_answers["default"] |
|
|
|
|
|
|
|
|
st.markdown("### Answer") |
|
|
|
|
|
st.markdown(f""" |
|
|
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); |
|
|
border-radius: 12px; padding: 1.5rem; margin: 1rem 0;"> |
|
|
{result['answer']} |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
if show_confidence: |
|
|
st.markdown(f"**Overall Confidence:** {format_confidence(result['confidence'])}", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
st.markdown("### π Citations") |
|
|
|
|
|
for citation in result["citations"][:top_k]: |
|
|
st.markdown(f""" |
|
|
<div class="evidence-box"> |
|
|
<strong>[{citation['index']}] Page {citation['page']}</strong> |
|
|
{f' - Confidence: {citation["confidence"]:.0%}' if show_confidence else ''} |
|
|
<br> |
|
|
<em>"{citation['snippet']}"</em> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
def render_classification_page(): |
|
|
"""Render the classification page.""" |
|
|
st.markdown("## π·οΈ Document Classification") |
|
|
|
|
|
st.markdown(""" |
|
|
Automatically classify documents into predefined categories with confidence scores |
|
|
and reasoning explanations. |
|
|
""") |
|
|
|
|
|
docs = get_sample_documents() |
|
|
|
|
|
col1, col2 = st.columns([2, 1]) |
|
|
|
|
|
with col1: |
|
|
if docs: |
|
|
selected_doc = st.selectbox("Select Document to Classify", docs, key="classify_doc") |
|
|
|
|
|
st.markdown("### Document Categories") |
|
|
categories = [ |
|
|
"π Legal/Patent Document", |
|
|
"π Contract/Agreement", |
|
|
"π Financial Report", |
|
|
"π Technical Specification", |
|
|
"π General Business Document", |
|
|
] |
|
|
st.markdown("\n".join([f"- {cat}" for cat in categories])) |
|
|
|
|
|
with col2: |
|
|
st.markdown("### Classification Options") |
|
|
detailed_reasoning = st.checkbox("Show detailed reasoning", value=True) |
|
|
multi_label = st.checkbox("Allow multiple categories", value=False) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
if st.button("π·οΈ Classify Document", type="primary"): |
|
|
classify_document_demo(selected_doc, detailed_reasoning) |
|
|
|
|
|
|
|
|
def classify_document_demo(doc_name, detailed_reasoning): |
|
|
"""Demo document classification.""" |
|
|
|
|
|
with st.spinner("Analyzing document..."): |
|
|
time.sleep(1.0) |
|
|
|
|
|
st.success("β
Classification complete!") |
|
|
|
|
|
|
|
|
col1, col2 = st.columns([2, 1]) |
|
|
|
|
|
with col1: |
|
|
st.markdown("### Primary Classification") |
|
|
st.markdown(""" |
|
|
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); |
|
|
border-radius: 12px; padding: 1.5rem; color: white; text-align: center;"> |
|
|
<h2 style="margin: 0;">π Legal/Patent Document</h2> |
|
|
<p style="font-size: 1.2rem; margin: 0.5rem 0;">Patent Non-Assertion Pledge</p> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
with col2: |
|
|
st.markdown("### Confidence Scores") |
|
|
st.markdown(f"**Legal/Patent:** {format_confidence(0.94)}", unsafe_allow_html=True) |
|
|
st.markdown(f"**Contract:** {format_confidence(0.72)}", unsafe_allow_html=True) |
|
|
st.markdown(f"**Technical:** {format_confidence(0.15)}", unsafe_allow_html=True) |
|
|
st.markdown(f"**Financial:** {format_confidence(0.08)}", unsafe_allow_html=True) |
|
|
|
|
|
if detailed_reasoning: |
|
|
st.markdown("---") |
|
|
st.markdown("### Classification Reasoning") |
|
|
|
|
|
st.markdown(""" |
|
|
<div class="evidence-box"> |
|
|
<strong>Why Legal/Patent Document?</strong> |
|
|
<ul> |
|
|
<li>Contains legal terminology: "pledge", "assert", "patent claims", "royalty-free"</li> |
|
|
<li>Structured as a formal legal declaration</li> |
|
|
<li>References specific patent-related definitions</li> |
|
|
<li>Contains commitment/obligation language</li> |
|
|
</ul> |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown(""" |
|
|
<div class="chunk-card"> |
|
|
<strong>Key Indicators Found:</strong> |
|
|
<br> |
|
|
β’ "Patent Pledge" - Document title indicator (weight: 0.35)<br> |
|
|
β’ "hereby pledges" - Legal commitment language (weight: 0.25)<br> |
|
|
β’ "Covered Patents" - Patent-specific terminology (weight: 0.20)<br> |
|
|
β’ "Open Source Software" - Tech/IP context (weight: 0.15) |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
def render_analytics_page(): |
|
|
"""Render the analytics page.""" |
|
|
st.markdown("## π Processing Analytics") |
|
|
|
|
|
st.markdown("View statistics and insights about document processing.") |
|
|
|
|
|
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
|
|
|
|
with col1: |
|
|
st.metric("Documents Processed", 24, delta="+3 today") |
|
|
with col2: |
|
|
st.metric("Total Chunks", 1247, delta="+156") |
|
|
with col3: |
|
|
st.metric("Avg. Confidence", "91.3%", delta="+2.1%") |
|
|
with col4: |
|
|
st.metric("Questions Answered", 89, delta="+12") |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
|
st.markdown("### Document Types Processed") |
|
|
import pandas as pd |
|
|
|
|
|
chart_data = pd.DataFrame({ |
|
|
"Type": ["Patent/Legal", "Contract", "Technical", "Financial", "Other"], |
|
|
"Count": [12, 5, 4, 2, 1], |
|
|
}) |
|
|
st.bar_chart(chart_data.set_index("Type")) |
|
|
|
|
|
with col2: |
|
|
st.markdown("### Processing Performance") |
|
|
perf_data = pd.DataFrame({ |
|
|
"Stage": ["OCR", "Layout", "Chunking", "Indexing", "Retrieval"], |
|
|
"Avg Time (s)": [2.3, 0.8, 0.5, 1.2, 0.3], |
|
|
}) |
|
|
st.bar_chart(perf_data.set_index("Stage")) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
st.markdown("### Recent Activity") |
|
|
|
|
|
activities = [ |
|
|
{"time": "2 min ago", "action": "Processed", "document": "IBM N_A.pdf", "chunks": 42}, |
|
|
{"time": "15 min ago", "action": "Indexed", "document": "Apple 11.11.2011.pdf", "chunks": 67}, |
|
|
{"time": "1 hour ago", "action": "Queried", "document": "RAG Collection", "chunks": 5}, |
|
|
{"time": "2 hours ago", "action": "Classified", "document": "Google 08.02.2012.pdf", "chunks": 0}, |
|
|
] |
|
|
|
|
|
for activity in activities: |
|
|
st.markdown(f""" |
|
|
<div class="chunk-card"> |
|
|
<strong>{activity['time']}</strong> - {activity['action']} <em>{activity['document']}</em> |
|
|
{f" ({activity['chunks']} chunks)" if activity['chunks'] > 0 else ""} |
|
|
</div> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
def main(): |
|
|
"""Main application.""" |
|
|
render_header() |
|
|
page = render_sidebar() |
|
|
|
|
|
|
|
|
if page == "π Home": |
|
|
render_home_page() |
|
|
elif page == "π Document Processing": |
|
|
render_document_processing_page() |
|
|
elif page == "π Field Extraction": |
|
|
render_extraction_page() |
|
|
elif page == "π¬ RAG Q&A": |
|
|
render_rag_page() |
|
|
elif page == "π·οΈ Classification": |
|
|
render_classification_page() |
|
|
elif page == "π Analytics": |
|
|
render_analytics_page() |
|
|
|
|
|
|
|
|
st.markdown("---") |
|
|
st.markdown( |
|
|
"""<div style='text-align: center; color: #666;'> |
|
|
π₯ SPARKNET - AI-Powered Technology Transfer Office Automation Platform<br> |
|
|
<small>VISTA/Horizon EU Project | Built with Streamlit</small><br> |
|
|
<span class="vista-badge" style="font-size: 0.7rem; padding: 0.2rem 0.5rem; margin-top: 0.5rem;">VISTA</span> |
|
|
<span class="eu-badge" style="font-size: 0.7rem; padding: 0.2rem 0.5rem; margin-top: 0.5rem;">Horizon EU</span> |
|
|
</div>""", |
|
|
unsafe_allow_html=True, |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|