ContentAnalyzer / app.py
MHamdan's picture
Update app.py
18d6761 verified
raw
history blame
9.14 kB
# app.py
import gradio as gr
import requests
from bs4 import BeautifulSoup
from transformers import pipeline
import PyPDF2
import docx
import os
import time
from typing import List, Tuple, Optional
class ContentAnalyzer:
def __init__(self):
print("[DEBUG] Initializing pipelines...")
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
self.sentiment_analyzer = pipeline("sentiment-analysis")
self.zero_shot = pipeline("zero-shot-classification")
print("[DEBUG] Pipelines initialized.")
def read_file(self, file_obj) -> str:
"""Read content from different file types."""
if file_obj is None:
print("[DEBUG] No file uploaded.")
return ""
file_ext = os.path.splitext(file_obj.name)[1].lower()
print(f"[DEBUG] Uploaded file extension detected: {file_ext}")
try:
if file_ext == '.txt':
content = file_obj.read().decode('utf-8')
print("[DEBUG] Successfully read .txt file.")
return content
elif file_ext == '.pdf':
# Note: For PyPDF2 >= 3.0.0, this usage is valid
pdf_reader = PyPDF2.PdfReader(file_obj)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
print("[DEBUG] Successfully read .pdf file.")
return text
elif file_ext == '.docx':
doc = docx.Document(file_obj)
paragraphs = [paragraph.text for paragraph in doc.paragraphs]
print("[DEBUG] Successfully read .docx file.")
return "\n".join(paragraphs)
else:
msg = f"Unsupported file type: {file_ext}"
print("[DEBUG]", msg)
return msg
except Exception as e:
error_msg = f"Error reading file: {str(e)}"
print("[DEBUG]", error_msg)
return error_msg
def fetch_web_content(self, url: str) -> str:
"""Fetch content from URL."""
print(f"[DEBUG] Attempting to fetch URL: {url}")
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Remove scripts and styles
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text(separator='\n')
lines = (line.strip() for line in text.splitlines())
final_text = "\n".join(line for line in lines if line)
print("[DEBUG] Successfully fetched and cleaned web content.")
return final_text
except Exception as e:
error_msg = f"Error fetching URL: {str(e)}"
print("[DEBUG]", error_msg)
return error_msg
def analyze_content(
self,
text: Optional[str] = None,
url: Optional[str] = None,
file: Optional[object] = None,
analysis_types: List[str] = ["summarize"],
progress_callback=None
) -> dict:
"""
Analyze content from text, URL, or file.
progress_callback is a function for updating progress steps.
"""
try:
# Step 1: Retrieve content
if progress_callback:
progress_callback(1, "Reading input...")
if url:
content = self.fetch_web_content(url)
elif file:
content = self.read_file(file)
else:
content = text or ""
if not content or content.startswith("Error"):
return {"error": content or "No content provided"}
# Truncate for debug
truncated = content[:1000] + "..." if len(content) > 1000 else content
results = {"original_text": truncated}
# Step 2: Summarize
if "summarize" in analysis_types:
if progress_callback:
progress_callback(2, "Summarizing content...")
summary = self.summarizer(content[:1024], max_length=130, min_length=30)
results["summary"] = summary[0]['summary_text']
# Step 3: Sentiment
if "sentiment" in analysis_types:
if progress_callback:
progress_callback(3, "Performing sentiment analysis...")
sentiment = self.sentiment_analyzer(content[:512])
results["sentiment"] = {
"label": sentiment[0]['label'],
"score": round(sentiment[0]['score'], 3)
}
# Step 4: Topics
if "topics" in analysis_types:
if progress_callback:
progress_callback(4, "Identifying topics...")
topics = self.zero_shot(
content[:512],
candidate_labels=[
"technology", "science", "business", "politics",
"entertainment", "education", "health", "sports"
]
)
results["topics"] = [
{"label": label, "score": round(score, 3)}
for label, score in zip(topics['labels'], topics['scores'])
if score > 0.1
]
return results
except Exception as e:
error_msg = f"Analysis error: {str(e)}"
print("[DEBUG]", error_msg)
return {"error": error_msg}
def create_interface():
analyzer = ContentAnalyzer()
with gr.Blocks(title="Content Analyzer") as demo:
gr.Markdown("# πŸ“‘ Content Analyzer")
gr.Markdown("Analyze text content from various sources using AI.")
with gr.Tabs():
# Text Input Tab
with gr.Tab("Text Input"):
text_input = gr.Textbox(
label="Enter Text",
placeholder="Paste your text here...",
lines=5
)
# URL Input Tab
with gr.Tab("Web URL"):
url_input = gr.Textbox(
label="Enter URL",
placeholder="https://example.com"
)
# File Upload Tab
with gr.Tab("File Upload"):
file_input = gr.File(
label="Upload File",
file_types=[".txt", ".pdf", ".docx"]
)
# Analysis Options
analysis_types = gr.CheckboxGroup(
choices=["summarize", "sentiment", "topics"],
value=["summarize"],
label="Analysis Types"
)
analyze_btn = gr.Button("Analyze", variant="primary")
# Output Sections
with gr.Tabs():
with gr.Tab("Original Text"):
original_text = gr.Markdown()
with gr.Tab("Summary"):
summary_output = gr.Markdown()
with gr.Tab("Sentiment"):
sentiment_output = gr.Markdown()
with gr.Tab("Topics"):
topics_output = gr.Markdown()
def process_analysis(text, url, file, types, progress=gr.Progress()):
"""
This function is wrapped by gradio to handle user inputs.
We use progress to show step-by-step updates.
"""
steps_total = 4 # We have up to 4 possible steps
def progress_callback(step, desc):
progress((step, desc), total=steps_total)
results = analyzer.analyze_content(
text=text,
url=url,
file=file,
analysis_types=types,
progress_callback=progress_callback
)
# If there's an error, show it in "Original Text" tab for clarity
if "error" in results:
return results["error"], "", "", ""
# Format outputs
original = results.get("original_text", "")
summary = results.get("summary", "")
sentiment = ""
if "sentiment" in results:
sent = results["sentiment"]
sentiment = f"**Sentiment:** {sent['label']} (Confidence: {sent['score']})"
topics = ""
if "topics" in results:
topics_list = "\n".join([
f"- {t['label']}: {t['score']}"
for t in results["topics"]
])
topics = "**Detected Topics:**\n" + topics_list
return original, summary, sentiment, topics
analyze_btn.click(
fn=process_analysis,
inputs=[text_input, url_input, file_input, analysis_types],
outputs=[original_text, summary_output, sentiment_output, topics_output],
show_progress=True # Enable the progress bar in Gradio
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()