Commit
·
bb3c951
1
Parent(s):
2ee9112
Update app with audio/image buttons, model fixes, and UI enhancements
Browse files- Dockerfile +2 -1
- README.md +1 -1
- api/endpoints.py +39 -12
- api/models.py +3 -2
- main.py +137 -63
- requirements.txt +3 -3
- utils/generation.py +190 -42
- utils/web_search.py +13 -4
Dockerfile
CHANGED
|
@@ -3,12 +3,13 @@ FROM python:3.10-slim
|
|
| 3 |
# Set working directory
|
| 4 |
WORKDIR /app
|
| 5 |
|
| 6 |
-
# Install
|
| 7 |
RUN apt-get update && apt-get install -y \
|
| 8 |
chromium-driver \
|
| 9 |
git \
|
| 10 |
gcc \
|
| 11 |
libc-dev \
|
|
|
|
| 12 |
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
| 13 |
|
| 14 |
# Update pip
|
|
|
|
| 3 |
# Set working directory
|
| 4 |
WORKDIR /app
|
| 5 |
|
| 6 |
+
# Install system dependencies
|
| 7 |
RUN apt-get update && apt-get install -y \
|
| 8 |
chromium-driver \
|
| 9 |
git \
|
| 10 |
gcc \
|
| 11 |
libc-dev \
|
| 12 |
+
ffmpeg \
|
| 13 |
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
| 14 |
|
| 15 |
# Update pip
|
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: "🤖"
|
| 4 |
colorFrom: "blue"
|
| 5 |
colorTo: "green"
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MGZon Chatbot
|
| 3 |
emoji: "🤖"
|
| 4 |
colorFrom: "blue"
|
| 5 |
colorTo: "green"
|
api/endpoints.py
CHANGED
|
@@ -5,6 +5,7 @@ import io
|
|
| 5 |
from openai import OpenAI
|
| 6 |
from api.models import QueryRequest
|
| 7 |
from utils.generation import request_generation, select_model
|
|
|
|
| 8 |
|
| 9 |
router = APIRouter()
|
| 10 |
|
|
@@ -12,13 +13,15 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
| 12 |
BACKUP_HF_TOKEN = os.getenv("BACKUP_HF_TOKEN")
|
| 13 |
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://router.huggingface.co/v1")
|
| 14 |
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-20b:together")
|
|
|
|
|
|
|
| 15 |
|
| 16 |
@router.get("/api/model-info")
|
| 17 |
def model_info():
|
| 18 |
return {
|
| 19 |
"model_name": MODEL_NAME,
|
| 20 |
-
"secondary_model":
|
| 21 |
-
"tertiary_model":
|
| 22 |
"clip_base_model": os.getenv("CLIP_BASE_MODEL", "openai/clip-vit-base-patch32"),
|
| 23 |
"clip_large_model": os.getenv("CLIP_LARGE_MODEL", "openai/clip-vit-large-patch14"),
|
| 24 |
"api_base": API_ENDPOINT,
|
|
@@ -46,7 +49,11 @@ async def chat_endpoint(req: QueryRequest):
|
|
| 46 |
temperature=req.temperature,
|
| 47 |
max_new_tokens=req.max_new_tokens,
|
| 48 |
deep_search=req.enable_browsing,
|
|
|
|
| 49 |
)
|
|
|
|
|
|
|
|
|
|
| 50 |
response = "".join([chunk for chunk in stream if isinstance(chunk, str)])
|
| 51 |
return {"response": response}
|
| 52 |
|
|
@@ -54,7 +61,7 @@ async def chat_endpoint(req: QueryRequest):
|
|
| 54 |
async def audio_transcription_endpoint(file: UploadFile = File(...)):
|
| 55 |
model_name, api_endpoint = select_model("transcribe audio", input_type="audio")
|
| 56 |
audio_data = await file.read()
|
| 57 |
-
response = "".join(
|
| 58 |
api_key=HF_TOKEN,
|
| 59 |
api_base=api_endpoint,
|
| 60 |
message="Transcribe audio",
|
|
@@ -64,14 +71,15 @@ async def audio_transcription_endpoint(file: UploadFile = File(...)):
|
|
| 64 |
max_new_tokens=128000,
|
| 65 |
input_type="audio",
|
| 66 |
audio_data=audio_data,
|
| 67 |
-
|
|
|
|
| 68 |
return {"transcription": response}
|
| 69 |
|
| 70 |
@router.post("/api/text-to-speech")
|
| 71 |
async def text_to_speech_endpoint(req: dict):
|
| 72 |
text = req.get("text", "")
|
| 73 |
model_name, api_endpoint = select_model("text to speech", input_type="text")
|
| 74 |
-
|
| 75 |
api_key=HF_TOKEN,
|
| 76 |
api_base=api_endpoint,
|
| 77 |
message=text,
|
|
@@ -80,8 +88,9 @@ async def text_to_speech_endpoint(req: dict):
|
|
| 80 |
temperature=0.7,
|
| 81 |
max_new_tokens=128000,
|
| 82 |
input_type="text",
|
|
|
|
| 83 |
)
|
| 84 |
-
audio_data = b"".join([chunk for chunk in
|
| 85 |
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 86 |
|
| 87 |
@router.post("/api/code")
|
|
@@ -89,9 +98,10 @@ async def code_endpoint(req: dict):
|
|
| 89 |
framework = req.get("framework")
|
| 90 |
task = req.get("task")
|
| 91 |
code = req.get("code", "")
|
|
|
|
| 92 |
prompt = f"Generate code for task: {task} using {framework}. Existing code: {code}"
|
| 93 |
model_name, api_endpoint = select_model(prompt)
|
| 94 |
-
|
| 95 |
api_key=HF_TOKEN,
|
| 96 |
api_base=api_endpoint,
|
| 97 |
message=prompt,
|
|
@@ -99,14 +109,20 @@ async def code_endpoint(req: dict):
|
|
| 99 |
model_name=model_name,
|
| 100 |
temperature=0.7,
|
| 101 |
max_new_tokens=128000,
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
return {"generated_code": response}
|
| 104 |
|
| 105 |
@router.post("/api/analysis")
|
| 106 |
async def analysis_endpoint(req: dict):
|
| 107 |
message = req.get("text", "")
|
|
|
|
| 108 |
model_name, api_endpoint = select_model(message)
|
| 109 |
-
|
| 110 |
api_key=HF_TOKEN,
|
| 111 |
api_base=api_endpoint,
|
| 112 |
message=message,
|
|
@@ -114,14 +130,20 @@ async def analysis_endpoint(req: dict):
|
|
| 114 |
model_name=model_name,
|
| 115 |
temperature=0.7,
|
| 116 |
max_new_tokens=128000,
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
return {"analysis": response}
|
| 119 |
|
| 120 |
@router.post("/api/image-analysis")
|
| 121 |
async def image_analysis_endpoint(file: UploadFile = File(...)):
|
|
|
|
| 122 |
model_name, api_endpoint = select_model("analyze image", input_type="image")
|
| 123 |
image_data = await file.read()
|
| 124 |
-
|
| 125 |
api_key=HF_TOKEN,
|
| 126 |
api_base=api_endpoint,
|
| 127 |
message="Analyze this image",
|
|
@@ -131,7 +153,12 @@ async def image_analysis_endpoint(file: UploadFile = File(...)):
|
|
| 131 |
max_new_tokens=128000,
|
| 132 |
input_type="image",
|
| 133 |
image_data=image_data,
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
return {"image_analysis": response}
|
| 136 |
|
| 137 |
@router.get("/api/test-model")
|
|
|
|
| 5 |
from openai import OpenAI
|
| 6 |
from api.models import QueryRequest
|
| 7 |
from utils.generation import request_generation, select_model
|
| 8 |
+
from utils.web_search import web_search
|
| 9 |
|
| 10 |
router = APIRouter()
|
| 11 |
|
|
|
|
| 13 |
BACKUP_HF_TOKEN = os.getenv("BACKUP_HF_TOKEN")
|
| 14 |
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://router.huggingface.co/v1")
|
| 15 |
MODEL_NAME = os.getenv("MODEL_NAME", "openai/gpt-oss-20b:together")
|
| 16 |
+
SECONDARY_MODEL_NAME = os.getenv("SECONDARY_MODEL_NAME", "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B:featherless-ai")
|
| 17 |
+
TERTIARY_MODEL_NAME = os.getenv("TERTIARY_MODEL_NAME", "openai/gpt-oss-120b:cerebras")
|
| 18 |
|
| 19 |
@router.get("/api/model-info")
|
| 20 |
def model_info():
|
| 21 |
return {
|
| 22 |
"model_name": MODEL_NAME,
|
| 23 |
+
"secondary_model": SECONDARY_MODEL_NAME,
|
| 24 |
+
"tertiary_model": TERTIARY_MODEL_NAME,
|
| 25 |
"clip_base_model": os.getenv("CLIP_BASE_MODEL", "openai/clip-vit-base-patch32"),
|
| 26 |
"clip_large_model": os.getenv("CLIP_LARGE_MODEL", "openai/clip-vit-large-patch14"),
|
| 27 |
"api_base": API_ENDPOINT,
|
|
|
|
| 49 |
temperature=req.temperature,
|
| 50 |
max_new_tokens=req.max_new_tokens,
|
| 51 |
deep_search=req.enable_browsing,
|
| 52 |
+
output_format=req.output_format
|
| 53 |
)
|
| 54 |
+
if req.output_format == "audio":
|
| 55 |
+
audio_data = b"".join([chunk for chunk in stream if isinstance(chunk, bytes)])
|
| 56 |
+
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 57 |
response = "".join([chunk for chunk in stream if isinstance(chunk, str)])
|
| 58 |
return {"response": response}
|
| 59 |
|
|
|
|
| 61 |
async def audio_transcription_endpoint(file: UploadFile = File(...)):
|
| 62 |
model_name, api_endpoint = select_model("transcribe audio", input_type="audio")
|
| 63 |
audio_data = await file.read()
|
| 64 |
+
response = "".join(list(request_generation(
|
| 65 |
api_key=HF_TOKEN,
|
| 66 |
api_base=api_endpoint,
|
| 67 |
message="Transcribe audio",
|
|
|
|
| 71 |
max_new_tokens=128000,
|
| 72 |
input_type="audio",
|
| 73 |
audio_data=audio_data,
|
| 74 |
+
output_format="text"
|
| 75 |
+
)))
|
| 76 |
return {"transcription": response}
|
| 77 |
|
| 78 |
@router.post("/api/text-to-speech")
|
| 79 |
async def text_to_speech_endpoint(req: dict):
|
| 80 |
text = req.get("text", "")
|
| 81 |
model_name, api_endpoint = select_model("text to speech", input_type="text")
|
| 82 |
+
stream = request_generation(
|
| 83 |
api_key=HF_TOKEN,
|
| 84 |
api_base=api_endpoint,
|
| 85 |
message=text,
|
|
|
|
| 88 |
temperature=0.7,
|
| 89 |
max_new_tokens=128000,
|
| 90 |
input_type="text",
|
| 91 |
+
output_format="audio"
|
| 92 |
)
|
| 93 |
+
audio_data = b"".join([chunk for chunk in stream if isinstance(chunk, bytes)])
|
| 94 |
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 95 |
|
| 96 |
@router.post("/api/code")
|
|
|
|
| 98 |
framework = req.get("framework")
|
| 99 |
task = req.get("task")
|
| 100 |
code = req.get("code", "")
|
| 101 |
+
output_format = req.get("output_format", "text")
|
| 102 |
prompt = f"Generate code for task: {task} using {framework}. Existing code: {code}"
|
| 103 |
model_name, api_endpoint = select_model(prompt)
|
| 104 |
+
stream = request_generation(
|
| 105 |
api_key=HF_TOKEN,
|
| 106 |
api_base=api_endpoint,
|
| 107 |
message=prompt,
|
|
|
|
| 109 |
model_name=model_name,
|
| 110 |
temperature=0.7,
|
| 111 |
max_new_tokens=128000,
|
| 112 |
+
output_format=output_format
|
| 113 |
+
)
|
| 114 |
+
if output_format == "audio":
|
| 115 |
+
audio_data = b"".join([chunk for chunk in stream if isinstance(chunk, bytes)])
|
| 116 |
+
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 117 |
+
response = "".join([chunk for chunk in stream if isinstance(chunk, str)])
|
| 118 |
return {"generated_code": response}
|
| 119 |
|
| 120 |
@router.post("/api/analysis")
|
| 121 |
async def analysis_endpoint(req: dict):
|
| 122 |
message = req.get("text", "")
|
| 123 |
+
output_format = req.get("output_format", "text")
|
| 124 |
model_name, api_endpoint = select_model(message)
|
| 125 |
+
stream = request_generation(
|
| 126 |
api_key=HF_TOKEN,
|
| 127 |
api_base=api_endpoint,
|
| 128 |
message=message,
|
|
|
|
| 130 |
model_name=model_name,
|
| 131 |
temperature=0.7,
|
| 132 |
max_new_tokens=128000,
|
| 133 |
+
output_format=output_format
|
| 134 |
+
)
|
| 135 |
+
if output_format == "audio":
|
| 136 |
+
audio_data = b"".join([chunk for chunk in stream if isinstance(chunk, bytes)])
|
| 137 |
+
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 138 |
+
response = "".join([chunk for chunk in stream if isinstance(chunk, str)])
|
| 139 |
return {"analysis": response}
|
| 140 |
|
| 141 |
@router.post("/api/image-analysis")
|
| 142 |
async def image_analysis_endpoint(file: UploadFile = File(...)):
|
| 143 |
+
output_format = "text" # يمكن تعديله لدعم الصوت
|
| 144 |
model_name, api_endpoint = select_model("analyze image", input_type="image")
|
| 145 |
image_data = await file.read()
|
| 146 |
+
stream = request_generation(
|
| 147 |
api_key=HF_TOKEN,
|
| 148 |
api_base=api_endpoint,
|
| 149 |
message="Analyze this image",
|
|
|
|
| 153 |
max_new_tokens=128000,
|
| 154 |
input_type="image",
|
| 155 |
image_data=image_data,
|
| 156 |
+
output_format=output_format
|
| 157 |
+
)
|
| 158 |
+
if output_format == "audio":
|
| 159 |
+
audio_data = b"".join([chunk for chunk in stream if isinstance(chunk, bytes)])
|
| 160 |
+
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
|
| 161 |
+
response = "".join([chunk for chunk in stream if isinstance(chunk, str)])
|
| 162 |
return {"image_analysis": response}
|
| 163 |
|
| 164 |
@router.get("/api/test-model")
|
api/models.py
CHANGED
|
@@ -3,8 +3,9 @@ from typing import List, Optional
|
|
| 3 |
|
| 4 |
class QueryRequest(BaseModel):
|
| 5 |
message: str
|
| 6 |
-
system_prompt: str = "You are an expert assistant providing detailed, comprehensive, and well-structured responses.
|
| 7 |
history: Optional[List[dict]] = None
|
| 8 |
temperature: float = 0.7
|
| 9 |
max_new_tokens: int = 128000
|
| 10 |
-
enable_browsing: bool =
|
|
|
|
|
|
| 3 |
|
| 4 |
class QueryRequest(BaseModel):
|
| 5 |
message: str
|
| 6 |
+
system_prompt: str = "You are an expert assistant providing detailed, comprehensive, and well-structured responses. For code, include comments, examples, and complete implementations. For image-related queries, provide detailed analysis or descriptions. For general queries, provide in-depth explanations with examples and additional context where applicable. Respond in the requested output format (text or audio)."
|
| 7 |
history: Optional[List[dict]] = None
|
| 8 |
temperature: float = 0.7
|
| 9 |
max_new_tokens: int = 128000
|
| 10 |
+
enable_browsing: bool = False
|
| 11 |
+
output_format: str = "text" # جديد: دعم نوع الإخراج
|
main.py
CHANGED
|
@@ -32,42 +32,88 @@ CONCURRENCY_LIMIT = int(os.getenv("CONCURRENCY_LIMIT", 20))
|
|
| 32 |
# إعداد CSS
|
| 33 |
css = """
|
| 34 |
.gradio-container { max-width: 1200px; margin: auto; font-family: Arial, sans-serif; }
|
| 35 |
-
.chatbot {
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
}
|
| 40 |
-
.upload-button:hover, .capture-button:hover, .record-button:hover { background-color: #45a049; }
|
| 41 |
-
.upload-button::before { content: '📷 '; font-size: 20px; }
|
| 42 |
-
.capture-button::before { content: '🎥 '; font-size: 20px; }
|
| 43 |
-
.record-button::before { content: '🎤 '; font-size: 20px; }
|
| 44 |
-
.audio-output::before { content: '🔊 '; font-size: 20px; }
|
| 45 |
.loading::after {
|
| 46 |
-
content: '';
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
}
|
| 49 |
-
@keyframes spin { to { transform: rotate(360deg); } }
|
| 50 |
.output-container {
|
| 51 |
-
margin-top:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
}
|
| 53 |
.audio-output-container {
|
| 54 |
-
display: flex;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
}
|
| 56 |
"""
|
| 57 |
|
| 58 |
# دالة لمعالجة الإدخال
|
| 59 |
-
def process_input(message, audio_input=None, image_input=None, history=None, system_prompt=None, temperature=0.7, reasoning_effort="medium", enable_browsing=True, max_new_tokens=128000):
|
| 60 |
input_type = "text"
|
| 61 |
audio_data = None
|
| 62 |
image_data = None
|
| 63 |
if audio_input:
|
| 64 |
input_type = "audio"
|
| 65 |
-
|
|
|
|
| 66 |
message = "Transcribe this audio"
|
| 67 |
elif image_input:
|
| 68 |
input_type = "image"
|
| 69 |
-
|
| 70 |
-
|
|
|
|
| 71 |
|
| 72 |
response_text = ""
|
| 73 |
audio_response = None
|
|
@@ -81,7 +127,8 @@ def process_input(message, audio_input=None, image_input=None, history=None, sys
|
|
| 81 |
max_new_tokens=max_new_tokens,
|
| 82 |
input_type=input_type,
|
| 83 |
audio_data=audio_data,
|
| 84 |
-
image_data=image_data
|
|
|
|
| 85 |
):
|
| 86 |
if isinstance(chunk, bytes):
|
| 87 |
audio_response = io.BytesIO(chunk)
|
|
@@ -90,56 +137,78 @@ def process_input(message, audio_input=None, image_input=None, history=None, sys
|
|
| 90 |
response_text += chunk
|
| 91 |
yield response_text, audio_response
|
| 92 |
|
| 93 |
-
# دالة
|
| 94 |
-
def
|
| 95 |
-
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
# دالة
|
| 98 |
-
def
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
|
| 101 |
# إعداد واجهة Gradio
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
# إعداد FastAPI
|
| 141 |
app = FastAPI(title="MGZon Chatbot API")
|
| 142 |
-
app.include_router(api_router)
|
| 143 |
|
| 144 |
# ربط Gradio مع FastAPI
|
| 145 |
app = gr.mount_gradio_app(app, chatbot_ui, path="/gradio")
|
|
@@ -163,22 +232,27 @@ class NotFoundMiddleware(BaseHTTPMiddleware):
|
|
| 163 |
|
| 164 |
app.add_middleware(NotFoundMiddleware)
|
| 165 |
|
|
|
|
| 166 |
@app.get("/", response_class=HTMLResponse)
|
| 167 |
async def root(request: Request):
|
| 168 |
return templates.TemplateResponse("index.html", {"request": request})
|
| 169 |
|
|
|
|
| 170 |
@app.get("/docs", response_class=HTMLResponse)
|
| 171 |
async def docs(request: Request):
|
| 172 |
return templates.TemplateResponse("docs.html", {"request": request})
|
| 173 |
|
|
|
|
| 174 |
@app.get("/swagger", response_class=HTMLResponse)
|
| 175 |
async def swagger_ui():
|
| 176 |
return get_swagger_ui_html(openapi_url="/openapi.json", title="MGZon API Documentation")
|
| 177 |
|
|
|
|
| 178 |
@app.get("/launch-chatbot", response_class=RedirectResponse)
|
| 179 |
async def launch_chatbot():
|
| 180 |
return RedirectResponse(url="/gradio", status_code=302)
|
| 181 |
|
|
|
|
| 182 |
if __name__ == "__main__":
|
| 183 |
import uvicorn
|
| 184 |
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860)))
|
|
|
|
| 32 |
# إعداد CSS
|
| 33 |
css = """
|
| 34 |
.gradio-container { max-width: 1200px; margin: auto; font-family: Arial, sans-serif; }
|
| 35 |
+
.chatbot {
|
| 36 |
+
border: 1px solid #ccc;
|
| 37 |
+
border-radius: 15px;
|
| 38 |
+
padding: 20px;
|
| 39 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 40 |
+
}
|
| 41 |
+
.input-textbox {
|
| 42 |
+
font-size: 18px;
|
| 43 |
+
padding: 12px;
|
| 44 |
+
border-radius: 8px;
|
| 45 |
+
border: 1px solid #aaa;
|
| 46 |
+
}
|
| 47 |
+
.upload-button, .audio-input-button, .audio-record-button {
|
| 48 |
+
background: #4CAF50;
|
| 49 |
+
color: white;
|
| 50 |
+
border-radius: 8px;
|
| 51 |
+
padding: 10px 20px;
|
| 52 |
+
font-size: 16px;
|
| 53 |
+
cursor: pointer;
|
| 54 |
+
}
|
| 55 |
+
.upload-button:hover, .audio-input-button:hover, .audio-record-button:hover {
|
| 56 |
+
background: #45a049;
|
| 57 |
+
}
|
| 58 |
+
.upload-button::before {
|
| 59 |
+
content: '📷 ';
|
| 60 |
+
font-size: 20px;
|
| 61 |
+
}
|
| 62 |
+
.audio-input-button::before {
|
| 63 |
+
content: '🎤 ';
|
| 64 |
+
font-size: 20px;
|
| 65 |
+
}
|
| 66 |
+
.audio-record-button::before {
|
| 67 |
+
content: '🔊 ';
|
| 68 |
+
font-size: 20px;
|
| 69 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
.loading::after {
|
| 71 |
+
content: '';
|
| 72 |
+
display: inline-block;
|
| 73 |
+
width: 18px;
|
| 74 |
+
height: 18px;
|
| 75 |
+
border: 3px solid #333;
|
| 76 |
+
border-top-color: transparent;
|
| 77 |
+
border-radius: 50%;
|
| 78 |
+
animation: spin 1s linear infinite;
|
| 79 |
+
margin-left: 10px;
|
| 80 |
+
}
|
| 81 |
+
@keyframes spin {
|
| 82 |
+
to { transform: rotate(360deg); }
|
| 83 |
}
|
|
|
|
| 84 |
.output-container {
|
| 85 |
+
margin-top: 25px;
|
| 86 |
+
padding: 15px;
|
| 87 |
+
border: 1px solid #ddd;
|
| 88 |
+
border-radius: 10px;
|
| 89 |
+
background: #fff;
|
| 90 |
}
|
| 91 |
.audio-output-container {
|
| 92 |
+
display: flex;
|
| 93 |
+
align-items: center;
|
| 94 |
+
gap: 15px;
|
| 95 |
+
margin-top: 15px;
|
| 96 |
+
}
|
| 97 |
+
.output-format-radio {
|
| 98 |
+
margin-top: 10px;
|
| 99 |
}
|
| 100 |
"""
|
| 101 |
|
| 102 |
# دالة لمعالجة الإدخال
|
| 103 |
+
def process_input(message, audio_input=None, image_input=None, history=None, system_prompt=None, temperature=0.7, reasoning_effort="medium", enable_browsing=True, max_new_tokens=128000, output_format="text"):
|
| 104 |
input_type = "text"
|
| 105 |
audio_data = None
|
| 106 |
image_data = None
|
| 107 |
if audio_input:
|
| 108 |
input_type = "audio"
|
| 109 |
+
with open(audio_input, "rb") as f:
|
| 110 |
+
audio_data = f.read()
|
| 111 |
message = "Transcribe this audio"
|
| 112 |
elif image_input:
|
| 113 |
input_type = "image"
|
| 114 |
+
with open(image_input, "rb") as f:
|
| 115 |
+
image_data = f.read()
|
| 116 |
+
message = f"Analyze this image"
|
| 117 |
|
| 118 |
response_text = ""
|
| 119 |
audio_response = None
|
|
|
|
| 127 |
max_new_tokens=max_new_tokens,
|
| 128 |
input_type=input_type,
|
| 129 |
audio_data=audio_data,
|
| 130 |
+
image_data=image_data,
|
| 131 |
+
output_format=output_format
|
| 132 |
):
|
| 133 |
if isinstance(chunk, bytes):
|
| 134 |
audio_response = io.BytesIO(chunk)
|
|
|
|
| 137 |
response_text += chunk
|
| 138 |
yield response_text, audio_response
|
| 139 |
|
| 140 |
+
# دالة لمعالجة زر إرسال الصوت
|
| 141 |
+
def submit_audio(audio_input, output_format):
|
| 142 |
+
if not audio_input:
|
| 143 |
+
return "Please upload or record an audio file.", None
|
| 144 |
+
return process_input(message="", audio_input=audio_input, output_format=output_format)
|
| 145 |
|
| 146 |
+
# دالة لمعالجة زر إرسال الصورة
|
| 147 |
+
def submit_image(image_input, output_format):
|
| 148 |
+
if not image_input:
|
| 149 |
+
return "Please upload an image.", None
|
| 150 |
+
return process_input(message="", image_input=image_input, output_format=output_format)
|
| 151 |
|
| 152 |
# إعداد واجهة Gradio
|
| 153 |
+
with gr.Blocks(css=css, theme="gradio/soft") as chatbot_ui:
|
| 154 |
+
gr.Markdown(
|
| 155 |
+
"""
|
| 156 |
+
# MGZon Chatbot 🤖
|
| 157 |
+
A versatile chatbot powered by DeepSeek, GPT-OSS, CLIP, Whisper, and Parler-TTS. Supports text, audio, and image inputs with text or voice outputs. Upload files, record audio, or type your query and choose your output format!
|
| 158 |
+
"""
|
| 159 |
+
)
|
| 160 |
+
with gr.Row():
|
| 161 |
+
with gr.Column(scale=3):
|
| 162 |
+
chatbot = gr.Chatbot(label="Chat", height=500, latex_delimiters=LATEX_DELIMS)
|
| 163 |
+
with gr.Column(scale=1):
|
| 164 |
+
with gr.Accordion("⚙️ Settings", open=True):
|
| 165 |
+
system_prompt = gr.Textbox(
|
| 166 |
+
label="System Prompt",
|
| 167 |
+
value="You are an expert assistant providing detailed, comprehensive, and well-structured responses. Support text, audio, image, and file inputs. For audio, transcribe using Whisper. For text-to-speech, use Parler-TTS. For images, analyze content appropriately. Respond in the requested output format (text or audio).",
|
| 168 |
+
lines=4
|
| 169 |
+
)
|
| 170 |
+
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.7)
|
| 171 |
+
reasoning_effort = gr.Radio(label="Reasoning Effort", choices=["low", "medium", "high"], value="medium")
|
| 172 |
+
enable_browsing = gr.Checkbox(label="Enable DeepSearch (web browsing)", value=True)
|
| 173 |
+
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=50, maximum=128000, step=50, value=128000)
|
| 174 |
+
output_format = gr.Radio(
|
| 175 |
+
label="Output Format",
|
| 176 |
+
choices=["text", "audio"],
|
| 177 |
+
value="text",
|
| 178 |
+
elem_classes="output-format-radio"
|
| 179 |
+
)
|
| 180 |
+
with gr.Row():
|
| 181 |
+
message = gr.Textbox(label="Type your message", placeholder="Enter your query or describe your request...", lines=2, elem_classes="input-textbox")
|
| 182 |
+
submit_btn = gr.Button("Send", variant="primary")
|
| 183 |
+
with gr.Row():
|
| 184 |
+
with gr.Column(scale=1):
|
| 185 |
+
audio_input = gr.Audio(label="Record or Upload Audio", type="filepath", elem_classes="audio-input")
|
| 186 |
+
audio_submit_btn = gr.Button("Send Audio", elem_classes="audio-input-button")
|
| 187 |
+
with gr.Column(scale=1):
|
| 188 |
+
image_input = gr.File(label="Upload Image", file_types=["image"], elem_classes="upload-button")
|
| 189 |
+
image_submit_btn = gr.Button("Send Image", elem_classes="upload-button")
|
| 190 |
+
output_text = gr.Textbox(label="Response", lines=10, elem_classes="output-container")
|
| 191 |
+
output_audio = gr.Audio(label="Voice Output", type="filepath", elem_classes="audio-output-container", autoplay=True)
|
| 192 |
+
|
| 193 |
+
# ربط الأزرار
|
| 194 |
+
submit_btn.click(
|
| 195 |
+
fn=process_input,
|
| 196 |
+
inputs=[message, audio_input, image_input, chatbot, system_prompt, temperature, reasoning_effort, enable_browsing, max_new_tokens, output_format],
|
| 197 |
+
outputs=[output_text, output_audio]
|
| 198 |
+
)
|
| 199 |
+
audio_submit_btn.click(
|
| 200 |
+
fn=submit_audio,
|
| 201 |
+
inputs=[audio_input, output_format],
|
| 202 |
+
outputs=[output_text, output_audio]
|
| 203 |
+
)
|
| 204 |
+
image_submit_btn.click(
|
| 205 |
+
fn=submit_image,
|
| 206 |
+
inputs=[image_input, output_format],
|
| 207 |
+
outputs=[output_text, output_audio]
|
| 208 |
+
)
|
| 209 |
|
| 210 |
# إعداد FastAPI
|
| 211 |
app = FastAPI(title="MGZon Chatbot API")
|
|
|
|
| 212 |
|
| 213 |
# ربط Gradio مع FastAPI
|
| 214 |
app = gr.mount_gradio_app(app, chatbot_ui, path="/gradio")
|
|
|
|
| 232 |
|
| 233 |
app.add_middleware(NotFoundMiddleware)
|
| 234 |
|
| 235 |
+
# Root endpoint
|
| 236 |
@app.get("/", response_class=HTMLResponse)
|
| 237 |
async def root(request: Request):
|
| 238 |
return templates.TemplateResponse("index.html", {"request": request})
|
| 239 |
|
| 240 |
+
# Docs endpoint
|
| 241 |
@app.get("/docs", response_class=HTMLResponse)
|
| 242 |
async def docs(request: Request):
|
| 243 |
return templates.TemplateResponse("docs.html", {"request": request})
|
| 244 |
|
| 245 |
+
# Swagger UI endpoint
|
| 246 |
@app.get("/swagger", response_class=HTMLResponse)
|
| 247 |
async def swagger_ui():
|
| 248 |
return get_swagger_ui_html(openapi_url="/openapi.json", title="MGZon API Documentation")
|
| 249 |
|
| 250 |
+
# Redirect لـ /gradio
|
| 251 |
@app.get("/launch-chatbot", response_class=RedirectResponse)
|
| 252 |
async def launch_chatbot():
|
| 253 |
return RedirectResponse(url="/gradio", status_code=302)
|
| 254 |
|
| 255 |
+
# تشغيل الخادم
|
| 256 |
if __name__ == "__main__":
|
| 257 |
import uvicorn
|
| 258 |
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860)))
|
requirements.txt
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
fastapi==0.115.2
|
| 2 |
uvicorn==0.30.6
|
| 3 |
-
gradio
|
| 4 |
openai==1.42.0
|
| 5 |
httpx==0.27.0
|
| 6 |
python-dotenv==1.0.1
|
| 7 |
pydocstyle==6.3.0
|
| 8 |
-
requests==2.32.
|
| 9 |
beautifulsoup4==4.12.3
|
| 10 |
tenacity==8.5.0
|
| 11 |
selenium==4.25.0
|
|
@@ -18,7 +18,7 @@ numpy==1.26.4
|
|
| 18 |
parler-tts @ git+https://github.com/huggingface/parler-tts.git@5d0aca9753ab74ded179732f5bd797f7a8c6f8ee
|
| 19 |
torch==2.4.1
|
| 20 |
torchaudio==2.4.1
|
| 21 |
-
transformers==4.
|
| 22 |
webrtcvad==2.0.10
|
| 23 |
Pillow==10.4.0
|
| 24 |
urllib3==2.0.7
|
|
|
|
| 1 |
fastapi==0.115.2
|
| 2 |
uvicorn==0.30.6
|
| 3 |
+
gradio==4.48.0
|
| 4 |
openai==1.42.0
|
| 5 |
httpx==0.27.0
|
| 6 |
python-dotenv==1.0.1
|
| 7 |
pydocstyle==6.3.0
|
| 8 |
+
requests==2.32.3
|
| 9 |
beautifulsoup4==4.12.3
|
| 10 |
tenacity==8.5.0
|
| 11 |
selenium==4.25.0
|
|
|
|
| 18 |
parler-tts @ git+https://github.com/huggingface/parler-tts.git@5d0aca9753ab74ded179732f5bd797f7a8c6f8ee
|
| 19 |
torch==2.4.1
|
| 20 |
torchaudio==2.4.1
|
| 21 |
+
transformers==4.45.1
|
| 22 |
webrtcvad==2.0.10
|
| 23 |
Pillow==10.4.0
|
| 24 |
urllib3==2.0.7
|
utils/generation.py
CHANGED
|
@@ -15,7 +15,7 @@ import torchaudio
|
|
| 15 |
from PIL import Image
|
| 16 |
from transformers import CLIPModel, CLIPProcessor, AutoProcessor
|
| 17 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 18 |
-
from utils.web_search import web_search #
|
| 19 |
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
|
@@ -66,19 +66,35 @@ def check_model_availability(model_name: str, api_base: str, api_key: str) -> tu
|
|
| 66 |
|
| 67 |
def select_model(query: str, input_type: str = "text") -> tuple[str, str]:
|
| 68 |
query_lower = query.lower()
|
|
|
|
| 69 |
if input_type == "audio" or any(keyword in query_lower for keyword in ["voice", "audio", "speech", "صوت", "تحويل صوت"]):
|
| 70 |
logger.info(f"Selected {ASR_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for audio input")
|
| 71 |
return ASR_MODEL, FALLBACK_API_ENDPOINT
|
|
|
|
| 72 |
if any(keyword in query_lower for keyword in ["text-to-speech", "tts", "تحويل نص إلى صوت"]):
|
| 73 |
logger.info(f"Selected {TTS_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for text-to-speech")
|
| 74 |
return TTS_MODEL, FALLBACK_API_ENDPOINT
|
| 75 |
-
|
|
|
|
| 76 |
r"\bimage\b", r"\bpicture\b", r"\bphoto\b", r"\bvisual\b", r"\bصورة\b", r"\bتحليل\s+صورة\b",
|
| 77 |
r"\bimage\s+analysis\b", r"\bimage\s+classification\b", r"\bimage\s+description\b"
|
| 78 |
-
]
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
return MODEL_NAME, API_ENDPOINT
|
| 83 |
|
| 84 |
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=2, min=4, max=60))
|
|
@@ -98,6 +114,7 @@ def request_generation(
|
|
| 98 |
input_type: str = "text",
|
| 99 |
audio_data: Optional[bytes] = None,
|
| 100 |
image_data: Optional[bytes] = None,
|
|
|
|
| 101 |
) -> Generator[bytes | str, None, None]:
|
| 102 |
is_available, selected_api_key = check_model_availability(model_name, api_base, api_key)
|
| 103 |
if not is_available:
|
|
@@ -110,7 +127,8 @@ def request_generation(
|
|
| 110 |
"model_name": model_name,
|
| 111 |
"chat_history": chat_history,
|
| 112 |
"temperature": temperature,
|
| 113 |
-
"max_new_tokens": max_new_tokens
|
|
|
|
| 114 |
}, sort_keys=True).encode()).hexdigest()
|
| 115 |
|
| 116 |
if cache_key in cache:
|
|
@@ -123,7 +141,8 @@ def request_generation(
|
|
| 123 |
task_type = "general"
|
| 124 |
enhanced_system_prompt = system_prompt
|
| 125 |
|
| 126 |
-
|
|
|
|
| 127 |
task_type = "audio_transcription"
|
| 128 |
try:
|
| 129 |
audio_file = io.BytesIO(audio_data)
|
|
@@ -145,11 +164,12 @@ def request_generation(
|
|
| 145 |
yield f"Error: Audio transcription failed: {e}"
|
| 146 |
return
|
| 147 |
|
| 148 |
-
|
|
|
|
| 149 |
task_type = "text_to_speech"
|
| 150 |
try:
|
| 151 |
-
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
| 152 |
-
processor = AutoProcessor.from_pretrained(
|
| 153 |
inputs = processor(text=message, return_tensors="pt")
|
| 154 |
audio = model.generate(**inputs)
|
| 155 |
audio_file = io.BytesIO()
|
|
@@ -163,44 +183,58 @@ def request_generation(
|
|
| 163 |
yield f"Error: Text-to-speech failed: {e}"
|
| 164 |
return
|
| 165 |
|
| 166 |
-
|
|
|
|
| 167 |
task_type = "image_analysis"
|
| 168 |
try:
|
| 169 |
-
model = CLIPModel.from_pretrained(model_name
|
| 170 |
-
processor = CLIPProcessor.from_pretrained(model_name
|
| 171 |
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
| 172 |
inputs = processor(text=message, images=image, return_tensors="pt", padding=True)
|
| 173 |
outputs = model(**inputs)
|
| 174 |
logits_per_image = outputs.logits_per_image
|
| 175 |
probs = logits_per_image.softmax(dim=1)
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
return
|
| 179 |
except Exception as e:
|
| 180 |
logger.error(f"Image analysis failed: {e}")
|
| 181 |
yield f"Error: Image analysis failed: {e}"
|
| 182 |
return
|
| 183 |
|
|
|
|
| 184 |
if model_name in [CLIP_BASE_MODEL, CLIP_LARGE_MODEL]:
|
| 185 |
task_type = "image"
|
| 186 |
-
enhanced_system_prompt = f"{system_prompt}\nYou are an expert in image analysis and description. Provide detailed descriptions, classifications, or analysis of images based on the query."
|
| 187 |
elif any(keyword in message.lower() for keyword in ["code", "programming", "python", "javascript", "react", "django", "flask"]):
|
| 188 |
task_type = "code"
|
| 189 |
-
enhanced_system_prompt = f"{system_prompt}\nYou are an expert programmer. Provide accurate, well-commented code with comprehensive examples and detailed explanations."
|
| 190 |
elif any(keyword in message.lower() for keyword in ["analyze", "analysis", "تحليل"]):
|
| 191 |
task_type = "analysis"
|
| 192 |
-
enhanced_system_prompt = f"{system_prompt}\nProvide detailed analysis with step-by-step reasoning, examples, and data-driven insights."
|
| 193 |
elif any(keyword in message.lower() for keyword in ["review", "مراجعة"]):
|
| 194 |
task_type = "review"
|
| 195 |
-
enhanced_system_prompt = f"{system_prompt}\nReview the provided content thoroughly, identify issues, and suggest improvements with detailed explanations."
|
| 196 |
elif any(keyword in message.lower() for keyword in ["publish", "نشر"]):
|
| 197 |
task_type = "publish"
|
| 198 |
-
enhanced_system_prompt = f"{system_prompt}\nPrepare content for publishing, ensuring clarity, professionalism, and adherence to best practices."
|
| 199 |
else:
|
| 200 |
-
enhanced_system_prompt = f"{system_prompt}\nFor general queries, provide comprehensive, detailed responses with examples and explanations where applicable."
|
| 201 |
|
| 202 |
if len(message.split()) < 5:
|
| 203 |
-
enhanced_system_prompt += "\nEven for short queries, provide a detailed, in-depth response with examples and context."
|
| 204 |
|
| 205 |
logger.info(f"Task type detected: {task_type}")
|
| 206 |
input_messages: List[dict] = [{"role": "system", "content": enhanced_system_prompt}]
|
|
@@ -289,7 +323,7 @@ def request_generation(
|
|
| 289 |
reasoning_closed = True
|
| 290 |
|
| 291 |
if not saw_visible_output:
|
| 292 |
-
msg = "I attempted to call a tool, but tools aren't executed in this environment."
|
| 293 |
if last_tool_name:
|
| 294 |
try:
|
| 295 |
args_text = json.dumps(last_tool_args, ensure_ascii=False, default=str)
|
|
@@ -303,14 +337,30 @@ def request_generation(
|
|
| 303 |
cached_chunks.append(f"Error: Unknown error")
|
| 304 |
yield f"Error: Unknown error"
|
| 305 |
elif chunk.choices[0].finish_reason == "length":
|
| 306 |
-
cached_chunks.append("Response truncated due to token limit. Please refine your query.")
|
| 307 |
-
yield "Response truncated due to token limit. Please refine your query."
|
| 308 |
break
|
| 309 |
|
| 310 |
if buffer:
|
| 311 |
cached_chunks.append(buffer)
|
| 312 |
yield buffer
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
cache[cache_key] = cached_chunks
|
| 315 |
|
| 316 |
except Exception as e:
|
|
@@ -333,16 +383,20 @@ def request_generation(
|
|
| 333 |
input_type=input_type,
|
| 334 |
audio_data=audio_data,
|
| 335 |
image_data=image_data,
|
|
|
|
| 336 |
):
|
| 337 |
yield chunk
|
| 338 |
return
|
| 339 |
-
|
| 340 |
-
|
|
|
|
|
|
|
| 341 |
try:
|
| 342 |
-
is_available, selected_api_key = check_model_availability(fallback_model,
|
| 343 |
if not is_available:
|
| 344 |
-
|
| 345 |
-
|
|
|
|
| 346 |
stream = client.chat.completions.create(
|
| 347 |
model=fallback_model,
|
| 348 |
messages=input_messages,
|
|
@@ -355,18 +409,39 @@ def request_generation(
|
|
| 355 |
for chunk in stream:
|
| 356 |
if chunk.choices[0].delta.content:
|
| 357 |
content = chunk.choices[0].delta.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
saw_visible_output = True
|
| 359 |
buffer += content
|
|
|
|
| 360 |
if "\n" in buffer or len(buffer) > 5000:
|
| 361 |
cached_chunks.append(buffer)
|
| 362 |
yield buffer
|
| 363 |
buffer = ""
|
| 364 |
continue
|
|
|
|
| 365 |
if chunk.choices[0].finish_reason in ("stop", "error", "length"):
|
| 366 |
if buffer:
|
| 367 |
cached_chunks.append(buffer)
|
| 368 |
yield buffer
|
| 369 |
buffer = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
if not saw_visible_output:
|
| 371 |
cached_chunks.append("No visible output produced.")
|
| 372 |
yield "No visible output produced."
|
|
@@ -374,19 +449,91 @@ def request_generation(
|
|
| 374 |
cached_chunks.append(f"Error: Unknown error with fallback model {fallback_model}")
|
| 375 |
yield f"Error: Unknown error with fallback model {fallback_model}"
|
| 376 |
elif chunk.choices[0].finish_reason == "length":
|
| 377 |
-
cached_chunks.append("Response truncated due to token limit.")
|
| 378 |
-
yield "Response truncated due to token limit."
|
| 379 |
break
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
cache[cache_key] = cached_chunks
|
| 384 |
-
|
| 385 |
except Exception as e2:
|
| 386 |
logger.exception(f"[Gateway] Streaming failed for fallback model {fallback_model}: {e2}")
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
def format_final(analysis_text: str, visible_text: str) -> str:
|
| 392 |
reasoning_safe = html.escape((analysis_text or "").strip())
|
|
@@ -402,7 +549,7 @@ def format_final(analysis_text: str, visible_text: str) -> str:
|
|
| 402 |
f"{response}" if response else "No final response available."
|
| 403 |
)
|
| 404 |
|
| 405 |
-
def generate(message, history, system_prompt, temperature, reasoning_effort, enable_browsing, max_new_tokens, input_type="text", audio_data=None, image_data=None):
|
| 406 |
if not message.strip() and not audio_data and not image_data:
|
| 407 |
yield "Please enter a prompt or upload a file."
|
| 408 |
return
|
|
@@ -436,7 +583,7 @@ def generate(message, history, system_prompt, temperature, reasoning_effort, ena
|
|
| 436 |
"type": "function",
|
| 437 |
"function": {
|
| 438 |
"name": "code_generation",
|
| 439 |
-
"description": "Generate or modify code for various frameworks",
|
| 440 |
"parameters": {
|
| 441 |
"type": "object",
|
| 442 |
"properties": {
|
|
@@ -514,6 +661,7 @@ def generate(message, history, system_prompt, temperature, reasoning_effort, ena
|
|
| 514 |
input_type=input_type,
|
| 515 |
audio_data=audio_data,
|
| 516 |
image_data=image_data,
|
|
|
|
| 517 |
)
|
| 518 |
|
| 519 |
for chunk in stream:
|
|
|
|
| 15 |
from PIL import Image
|
| 16 |
from transformers import CLIPModel, CLIPProcessor, AutoProcessor
|
| 17 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 18 |
+
from utils.web_search import web_search # نقل الاستيراد لأعلى
|
| 19 |
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
|
|
|
| 66 |
|
| 67 |
def select_model(query: str, input_type: str = "text") -> tuple[str, str]:
|
| 68 |
query_lower = query.lower()
|
| 69 |
+
# دعم الصوت
|
| 70 |
if input_type == "audio" or any(keyword in query_lower for keyword in ["voice", "audio", "speech", "صوت", "تحويل صوت"]):
|
| 71 |
logger.info(f"Selected {ASR_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for audio input")
|
| 72 |
return ASR_MODEL, FALLBACK_API_ENDPOINT
|
| 73 |
+
# دعم تحويل النص إلى صوت
|
| 74 |
if any(keyword in query_lower for keyword in ["text-to-speech", "tts", "تحويل نص إلى صوت"]):
|
| 75 |
logger.info(f"Selected {TTS_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for text-to-speech")
|
| 76 |
return TTS_MODEL, FALLBACK_API_ENDPOINT
|
| 77 |
+
# نماذج CLIP للصور
|
| 78 |
+
image_patterns = [
|
| 79 |
r"\bimage\b", r"\bpicture\b", r"\bphoto\b", r"\bvisual\b", r"\bصورة\b", r"\bتحليل\s+صورة\b",
|
| 80 |
r"\bimage\s+analysis\b", r"\bimage\s+classification\b", r"\bimage\s+description\b"
|
| 81 |
+
]
|
| 82 |
+
for pattern in image_patterns:
|
| 83 |
+
if re.search(pattern, query_lower, re.IGNORECASE):
|
| 84 |
+
logger.info(f"Selected {CLIP_BASE_MODEL} with endpoint {FALLBACK_API_ENDPOINT} for image-related query: {query}")
|
| 85 |
+
return CLIP_BASE_MODEL, FALLBACK_API_ENDPOINT
|
| 86 |
+
# اختيار النموذج بناءً على توفره
|
| 87 |
+
available_models = [
|
| 88 |
+
(MODEL_NAME, API_ENDPOINT),
|
| 89 |
+
(SECONDARY_MODEL_NAME, FALLBACK_API_ENDPOINT),
|
| 90 |
+
(TERTIARY_MODEL_NAME, FALLBACK_API_ENDPOINT)
|
| 91 |
+
]
|
| 92 |
+
for model_name, api_endpoint in available_models:
|
| 93 |
+
is_available, _ = check_model_availability(model_name, api_endpoint, HF_TOKEN)
|
| 94 |
+
if is_available:
|
| 95 |
+
logger.info(f"Selected {model_name} with endpoint {api_endpoint} for query: {query}")
|
| 96 |
+
return model_name, api_endpoint
|
| 97 |
+
logger.error("No models available. Falling back to default.")
|
| 98 |
return MODEL_NAME, API_ENDPOINT
|
| 99 |
|
| 100 |
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=2, min=4, max=60))
|
|
|
|
| 114 |
input_type: str = "text",
|
| 115 |
audio_data: Optional[bytes] = None,
|
| 116 |
image_data: Optional[bytes] = None,
|
| 117 |
+
output_format: str = "text" # جديد: تحديد نوع الإخراج (text أو audio)
|
| 118 |
) -> Generator[bytes | str, None, None]:
|
| 119 |
is_available, selected_api_key = check_model_availability(model_name, api_base, api_key)
|
| 120 |
if not is_available:
|
|
|
|
| 127 |
"model_name": model_name,
|
| 128 |
"chat_history": chat_history,
|
| 129 |
"temperature": temperature,
|
| 130 |
+
"max_new_tokens": max_new_tokens,
|
| 131 |
+
"output_format": output_format
|
| 132 |
}, sort_keys=True).encode()).hexdigest()
|
| 133 |
|
| 134 |
if cache_key in cache:
|
|
|
|
| 141 |
task_type = "general"
|
| 142 |
enhanced_system_prompt = system_prompt
|
| 143 |
|
| 144 |
+
# معالجة الصوت (ASR)
|
| 145 |
+
if model_name == ASR_MODEL and audio_data:
|
| 146 |
task_type = "audio_transcription"
|
| 147 |
try:
|
| 148 |
audio_file = io.BytesIO(audio_data)
|
|
|
|
| 164 |
yield f"Error: Audio transcription failed: {e}"
|
| 165 |
return
|
| 166 |
|
| 167 |
+
# معالجة تحويل النص إلى صوت (TTS)
|
| 168 |
+
if model_name == TTS_MODEL or output_format == "audio":
|
| 169 |
task_type = "text_to_speech"
|
| 170 |
try:
|
| 171 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
|
| 172 |
+
processor = AutoProcessor.from_pretrained(TTS_MODEL)
|
| 173 |
inputs = processor(text=message, return_tensors="pt")
|
| 174 |
audio = model.generate(**inputs)
|
| 175 |
audio_file = io.BytesIO()
|
|
|
|
| 183 |
yield f"Error: Text-to-speech failed: {e}"
|
| 184 |
return
|
| 185 |
|
| 186 |
+
# معالجة الصور
|
| 187 |
+
if model_name in [CLIP_BASE_MODEL, CLIP_LARGE_MODEL] and image_data:
|
| 188 |
task_type = "image_analysis"
|
| 189 |
try:
|
| 190 |
+
model = CLIPModel.from_pretrained(model_name)
|
| 191 |
+
processor = CLIPProcessor.from_pretrained(model_name)
|
| 192 |
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
| 193 |
inputs = processor(text=message, images=image, return_tensors="pt", padding=True)
|
| 194 |
outputs = model(**inputs)
|
| 195 |
logits_per_image = outputs.logits_per_image
|
| 196 |
probs = logits_per_image.softmax(dim=1)
|
| 197 |
+
result = f"Image analysis result: {probs.tolist()}"
|
| 198 |
+
if output_format == "audio":
|
| 199 |
+
# تحويل النتيجة إلى صوت
|
| 200 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
|
| 201 |
+
processor = AutoProcessor.from_pretrained(TTS_MODEL)
|
| 202 |
+
inputs = processor(text=result, return_tensors="pt")
|
| 203 |
+
audio = model.generate(**inputs)
|
| 204 |
+
audio_file = io.BytesIO()
|
| 205 |
+
torchaudio.save(audio_file, audio[0], sample_rate=22050, format="wav")
|
| 206 |
+
audio_file.seek(0)
|
| 207 |
+
yield audio_file.read()
|
| 208 |
+
else:
|
| 209 |
+
yield result
|
| 210 |
+
cache[cache_key] = [result]
|
| 211 |
return
|
| 212 |
except Exception as e:
|
| 213 |
logger.error(f"Image analysis failed: {e}")
|
| 214 |
yield f"Error: Image analysis failed: {e}"
|
| 215 |
return
|
| 216 |
|
| 217 |
+
# تحسين system_prompt بناءً على نوع المهمة
|
| 218 |
if model_name in [CLIP_BASE_MODEL, CLIP_LARGE_MODEL]:
|
| 219 |
task_type = "image"
|
| 220 |
+
enhanced_system_prompt = f"{system_prompt}\nYou are an expert in image analysis and description. Provide detailed descriptions, classifications, or analysis of images based on the query. Continue until the query is fully addressed."
|
| 221 |
elif any(keyword in message.lower() for keyword in ["code", "programming", "python", "javascript", "react", "django", "flask"]):
|
| 222 |
task_type = "code"
|
| 223 |
+
enhanced_system_prompt = f"{system_prompt}\nYou are an expert programmer. Provide accurate, well-commented code with comprehensive examples and detailed explanations. Support frameworks like React, Django, Flask, and others. Format code with triple backticks (```) and specify the language. Continue until the task is fully addressed."
|
| 224 |
elif any(keyword in message.lower() for keyword in ["analyze", "analysis", "تحليل"]):
|
| 225 |
task_type = "analysis"
|
| 226 |
+
enhanced_system_prompt = f"{system_prompt}\nProvide detailed analysis with step-by-step reasoning, examples, and data-driven insights. Continue until all aspects of the query are thoroughly covered."
|
| 227 |
elif any(keyword in message.lower() for keyword in ["review", "مراجعة"]):
|
| 228 |
task_type = "review"
|
| 229 |
+
enhanced_system_prompt = f"{system_prompt}\nReview the provided content thoroughly, identify issues, and suggest improvements with detailed explanations. Ensure the response is complete and detailed."
|
| 230 |
elif any(keyword in message.lower() for keyword in ["publish", "نشر"]):
|
| 231 |
task_type = "publish"
|
| 232 |
+
enhanced_system_prompt = f"{system_prompt}\nPrepare content for publishing, ensuring clarity, professionalism, and adherence to best practices. Provide a complete and detailed response."
|
| 233 |
else:
|
| 234 |
+
enhanced_system_prompt = f"{system_prompt}\nFor general queries, provide comprehensive, detailed responses with examples and explanations where applicable. Continue generating content until the query is fully answered, leveraging the full capacity of the model."
|
| 235 |
|
| 236 |
if len(message.split()) < 5:
|
| 237 |
+
enhanced_system_prompt += "\nEven for short or general queries, provide a detailed, in-depth response with examples, explanations, and additional context to ensure completeness."
|
| 238 |
|
| 239 |
logger.info(f"Task type detected: {task_type}")
|
| 240 |
input_messages: List[dict] = [{"role": "system", "content": enhanced_system_prompt}]
|
|
|
|
| 323 |
reasoning_closed = True
|
| 324 |
|
| 325 |
if not saw_visible_output:
|
| 326 |
+
msg = "I attempted to call a tool, but tools aren't executed in this environment, so no final answer was produced."
|
| 327 |
if last_tool_name:
|
| 328 |
try:
|
| 329 |
args_text = json.dumps(last_tool_args, ensure_ascii=False, default=str)
|
|
|
|
| 337 |
cached_chunks.append(f"Error: Unknown error")
|
| 338 |
yield f"Error: Unknown error"
|
| 339 |
elif chunk.choices[0].finish_reason == "length":
|
| 340 |
+
cached_chunks.append("Response truncated due to token limit. Please refine your query or request continuation.")
|
| 341 |
+
yield "Response truncated due to token limit. Please refine your query or request continuation."
|
| 342 |
break
|
| 343 |
|
| 344 |
if buffer:
|
| 345 |
cached_chunks.append(buffer)
|
| 346 |
yield buffer
|
| 347 |
|
| 348 |
+
# إذا طلب الإخراج صوتي
|
| 349 |
+
if output_format == "audio" and buffer:
|
| 350 |
+
try:
|
| 351 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
|
| 352 |
+
processor = AutoProcessor.from_pretrained(TTS_MODEL)
|
| 353 |
+
inputs = processor(text=buffer, return_tensors="pt")
|
| 354 |
+
audio = model.generate(**inputs)
|
| 355 |
+
audio_file = io.BytesIO()
|
| 356 |
+
torchaudio.save(audio_file, audio[0], sample_rate=22050, format="wav")
|
| 357 |
+
audio_file.seek(0)
|
| 358 |
+
cached_chunks.append(audio_file.read())
|
| 359 |
+
yield audio_file.read()
|
| 360 |
+
except Exception as e:
|
| 361 |
+
logger.error(f"Text-to-speech conversion failed: {e}")
|
| 362 |
+
yield f"Error: Text-to-speech conversion failed: {e}"
|
| 363 |
+
|
| 364 |
cache[cache_key] = cached_chunks
|
| 365 |
|
| 366 |
except Exception as e:
|
|
|
|
| 383 |
input_type=input_type,
|
| 384 |
audio_data=audio_data,
|
| 385 |
image_data=image_data,
|
| 386 |
+
output_format=output_format,
|
| 387 |
):
|
| 388 |
yield chunk
|
| 389 |
return
|
| 390 |
+
if model_name == MODEL_NAME:
|
| 391 |
+
fallback_model = SECONDARY_MODEL_NAME
|
| 392 |
+
fallback_endpoint = FALLBACK_API_ENDPOINT
|
| 393 |
+
logger.info(f"Retrying with fallback model: {fallback_model} on {fallback_endpoint}")
|
| 394 |
try:
|
| 395 |
+
is_available, selected_api_key = check_model_availability(fallback_model, fallback_endpoint, selected_api_key)
|
| 396 |
if not is_available:
|
| 397 |
+
yield f"Error: Fallback model {fallback_model} is not available."
|
| 398 |
+
return
|
| 399 |
+
client = OpenAI(api_key=selected_api_key, base_url=fallback_endpoint, timeout=120.0)
|
| 400 |
stream = client.chat.completions.create(
|
| 401 |
model=fallback_model,
|
| 402 |
messages=input_messages,
|
|
|
|
| 409 |
for chunk in stream:
|
| 410 |
if chunk.choices[0].delta.content:
|
| 411 |
content = chunk.choices[0].delta.content
|
| 412 |
+
if content == "<|channel|>analysis<|message|>":
|
| 413 |
+
if not reasoning_started:
|
| 414 |
+
cached_chunks.append("analysis")
|
| 415 |
+
yield "analysis"
|
| 416 |
+
reasoning_started = True
|
| 417 |
+
continue
|
| 418 |
+
if content == "<|channel|>final<|message|>":
|
| 419 |
+
if reasoning_started and not reasoning_closed:
|
| 420 |
+
cached_chunks.append("assistantfinal")
|
| 421 |
+
yield "assistantfinal"
|
| 422 |
+
reasoning_closed = True
|
| 423 |
+
continue
|
| 424 |
+
|
| 425 |
saw_visible_output = True
|
| 426 |
buffer += content
|
| 427 |
+
|
| 428 |
if "\n" in buffer or len(buffer) > 5000:
|
| 429 |
cached_chunks.append(buffer)
|
| 430 |
yield buffer
|
| 431 |
buffer = ""
|
| 432 |
continue
|
| 433 |
+
|
| 434 |
if chunk.choices[0].finish_reason in ("stop", "error", "length"):
|
| 435 |
if buffer:
|
| 436 |
cached_chunks.append(buffer)
|
| 437 |
yield buffer
|
| 438 |
buffer = ""
|
| 439 |
+
|
| 440 |
+
if reasoning_started and not reasoning_closed:
|
| 441 |
+
cached_chunks.append("assistantfinal")
|
| 442 |
+
yield "assistantfinal"
|
| 443 |
+
reasoning_closed = True
|
| 444 |
+
|
| 445 |
if not saw_visible_output:
|
| 446 |
cached_chunks.append("No visible output produced.")
|
| 447 |
yield "No visible output produced."
|
|
|
|
| 449 |
cached_chunks.append(f"Error: Unknown error with fallback model {fallback_model}")
|
| 450 |
yield f"Error: Unknown error with fallback model {fallback_model}"
|
| 451 |
elif chunk.choices[0].finish_reason == "length":
|
| 452 |
+
cached_chunks.append("Response truncated due to token limit. Please refine your query or request continuation.")
|
| 453 |
+
yield "Response truncated due to token limit. Please refine your query or request continuation."
|
| 454 |
break
|
| 455 |
+
|
| 456 |
+
if buffer and output_format == "audio":
|
| 457 |
+
try:
|
| 458 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
|
| 459 |
+
processor = AutoProcessor.from_pretrained(TTS_MODEL)
|
| 460 |
+
inputs = processor(text=buffer, return_tensors="pt")
|
| 461 |
+
audio = model.generate(**inputs)
|
| 462 |
+
audio_file = io.BytesIO()
|
| 463 |
+
torchaudio.save(audio_file, audio[0], sample_rate=22050, format="wav")
|
| 464 |
+
audio_file.seek(0)
|
| 465 |
+
cached_chunks.append(audio_file.read())
|
| 466 |
+
yield audio_file.read()
|
| 467 |
+
except Exception as e:
|
| 468 |
+
logger.error(f"Text-to-speech conversion failed: {e}")
|
| 469 |
+
yield f"Error: Text-to-speech conversion failed: {e}"
|
| 470 |
+
|
| 471 |
cache[cache_key] = cached_chunks
|
| 472 |
+
|
| 473 |
except Exception as e2:
|
| 474 |
logger.exception(f"[Gateway] Streaming failed for fallback model {fallback_model}: {e2}")
|
| 475 |
+
try:
|
| 476 |
+
is_available, selected_api_key = check_model_availability(TERTIARY_MODEL_NAME, FALLBACK_API_ENDPOINT, selected_api_key)
|
| 477 |
+
if not is_available:
|
| 478 |
+
yield f"Error: Tertiary model {TERTIARY_MODEL_NAME} is not available."
|
| 479 |
+
return
|
| 480 |
+
client = OpenAI(api_key=selected_api_key, base_url=FALLBACK_API_ENDPOINT, timeout=120.0)
|
| 481 |
+
stream = client.chat.completions.create(
|
| 482 |
+
model=TERTIARY_MODEL_NAME,
|
| 483 |
+
messages=input_messages,
|
| 484 |
+
temperature=temperature,
|
| 485 |
+
max_tokens=max_new_tokens,
|
| 486 |
+
stream=True,
|
| 487 |
+
tools=[],
|
| 488 |
+
tool_choice="none",
|
| 489 |
+
)
|
| 490 |
+
for chunk in stream:
|
| 491 |
+
if chunk.choices[0].delta.content:
|
| 492 |
+
content = chunk.choices[0].delta.content
|
| 493 |
+
saw_visible_output = True
|
| 494 |
+
buffer += content
|
| 495 |
+
if "\n" in buffer or len(buffer) > 5000:
|
| 496 |
+
cached_chunks.append(buffer)
|
| 497 |
+
yield buffer
|
| 498 |
+
buffer = ""
|
| 499 |
+
continue
|
| 500 |
+
if chunk.choices[0].finish_reason in ("stop", "error", "length"):
|
| 501 |
+
if buffer:
|
| 502 |
+
cached_chunks.append(buffer)
|
| 503 |
+
yield buffer
|
| 504 |
+
buffer = ""
|
| 505 |
+
if not saw_visible_output:
|
| 506 |
+
cached_chunks.append("No visible output produced.")
|
| 507 |
+
yield "No visible output produced."
|
| 508 |
+
if chunk.choices[0].finish_reason == "error":
|
| 509 |
+
cached_chunks.append(f"Error: Unknown error with tertiary model {TERTIARY_MODEL_NAME}")
|
| 510 |
+
yield f"Error: Unknown error with tertiary model {TERTIARY_MODEL_NAME}"
|
| 511 |
+
elif chunk.choices[0].finish_reason == "length":
|
| 512 |
+
cached_chunks.append("Response truncated due to token limit. Please refine your query or request continuation.")
|
| 513 |
+
yield "Response truncated due to token limit. Please refine your query or request continuation."
|
| 514 |
+
break
|
| 515 |
+
if buffer and output_format == "audio":
|
| 516 |
+
try:
|
| 517 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(TTS_MODEL)
|
| 518 |
+
processor = AutoProcessor.from_pretrained(TTS_MODEL)
|
| 519 |
+
inputs = processor(text=buffer, return_tensors="pt")
|
| 520 |
+
audio = model.generate(**inputs)
|
| 521 |
+
audio_file = io.BytesIO()
|
| 522 |
+
torchaudio.save(audio_file, audio[0], sample_rate=22050, format="wav")
|
| 523 |
+
audio_file.seek(0)
|
| 524 |
+
cached_chunks.append(audio_file.read())
|
| 525 |
+
yield audio_file.read()
|
| 526 |
+
except Exception as e:
|
| 527 |
+
logger.error(f"Text-to-speech conversion failed: {e}")
|
| 528 |
+
yield f"Error: Text-to-speech conversion failed: {e}"
|
| 529 |
+
cache[cache_key] = cached_chunks
|
| 530 |
+
except Exception as e3:
|
| 531 |
+
logger.exception(f"[Gateway] Streaming failed for tertiary model {TERTIARY_MODEL_NAME}: {e3}")
|
| 532 |
+
yield f"Error: Failed to load all models: Primary ({model_name}), Secondary ({fallback_model}), Tertiary ({TERTIARY_MODEL_NAME}). Please check your model configurations."
|
| 533 |
+
return
|
| 534 |
+
else:
|
| 535 |
+
yield f"Error: Failed to load model {model_name}: {e}"
|
| 536 |
+
return
|
| 537 |
|
| 538 |
def format_final(analysis_text: str, visible_text: str) -> str:
|
| 539 |
reasoning_safe = html.escape((analysis_text or "").strip())
|
|
|
|
| 549 |
f"{response}" if response else "No final response available."
|
| 550 |
)
|
| 551 |
|
| 552 |
+
def generate(message, history, system_prompt, temperature, reasoning_effort, enable_browsing, max_new_tokens, input_type="text", audio_data=None, image_data=None, output_format="text"):
|
| 553 |
if not message.strip() and not audio_data and not image_data:
|
| 554 |
yield "Please enter a prompt or upload a file."
|
| 555 |
return
|
|
|
|
| 583 |
"type": "function",
|
| 584 |
"function": {
|
| 585 |
"name": "code_generation",
|
| 586 |
+
"description": "Generate or modify code for various frameworks (React, Django, Flask, etc.)",
|
| 587 |
"parameters": {
|
| 588 |
"type": "object",
|
| 589 |
"properties": {
|
|
|
|
| 661 |
input_type=input_type,
|
| 662 |
audio_data=audio_data,
|
| 663 |
image_data=image_data,
|
| 664 |
+
output_format=output_format,
|
| 665 |
)
|
| 666 |
|
| 667 |
for chunk in stream:
|
utils/web_search.py
CHANGED
|
@@ -12,18 +12,27 @@ def web_search(query: str) -> str:
|
|
| 12 |
if not google_api_key or not google_cse_id:
|
| 13 |
return "Web search requires GOOGLE_API_KEY and GOOGLE_CSE_ID to be set."
|
| 14 |
url = f"https://www.googleapis.com/customsearch/v1?key={google_api_key}&cx={google_cse_id}&q={query}"
|
| 15 |
-
response = requests.get(url, timeout=
|
| 16 |
response.raise_for_status()
|
| 17 |
results = response.json().get("items", [])
|
| 18 |
if not results:
|
| 19 |
return "No web results found."
|
| 20 |
search_results = []
|
| 21 |
-
for i, item in enumerate(results[:
|
| 22 |
title = item.get("title", "")
|
| 23 |
snippet = item.get("snippet", "")
|
| 24 |
link = item.get("link", "")
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
return "\n".join(search_results)
|
| 27 |
except Exception as e:
|
| 28 |
-
logger.exception(
|
| 29 |
return f"Web search error: {e}"
|
|
|
|
| 12 |
if not google_api_key or not google_cse_id:
|
| 13 |
return "Web search requires GOOGLE_API_KEY and GOOGLE_CSE_ID to be set."
|
| 14 |
url = f"https://www.googleapis.com/customsearch/v1?key={google_api_key}&cx={google_cse_id}&q={query}"
|
| 15 |
+
response = requests.get(url, timeout=10)
|
| 16 |
response.raise_for_status()
|
| 17 |
results = response.json().get("items", [])
|
| 18 |
if not results:
|
| 19 |
return "No web results found."
|
| 20 |
search_results = []
|
| 21 |
+
for i, item in enumerate(results[:5]):
|
| 22 |
title = item.get("title", "")
|
| 23 |
snippet = item.get("snippet", "")
|
| 24 |
link = item.get("link", "")
|
| 25 |
+
try:
|
| 26 |
+
page_response = requests.get(link, timeout=5)
|
| 27 |
+
page_response.raise_for_status()
|
| 28 |
+
soup = BeautifulSoup(page_response.text, "html.parser")
|
| 29 |
+
paragraphs = soup.find_all("p")
|
| 30 |
+
page_content = " ".join([p.get_text() for p in paragraphs][:1000])
|
| 31 |
+
except Exception as e:
|
| 32 |
+
logger.warning(f"Failed to fetch page content for {link}: {e}")
|
| 33 |
+
page_content = snippet
|
| 34 |
+
search_results.append(f"Result {i+1}:\nTitle: {title}\nLink: {link}\nContent: {page_content}\n")
|
| 35 |
return "\n".join(search_results)
|
| 36 |
except Exception as e:
|
| 37 |
+
logger.exception("Web search failed")
|
| 38 |
return f"Web search error: {e}"
|