Deploy FastAPI Hugging Face Space without model files
Browse files- Dockerfile +6 -10
- app/main.py +8 -41
- requirements.txt +1 -0
Dockerfile
CHANGED
|
@@ -1,15 +1,11 @@
|
|
| 1 |
-
FROM python:3.10
|
| 2 |
-
|
| 3 |
-
RUN useradd -m -u 1000 user
|
| 4 |
-
USER user
|
| 5 |
-
ENV HOME=/home/user \
|
| 6 |
-
PATH=/home/user/.local/bin:$PATH \
|
| 7 |
-
TRANSFORMERS_CACHE=/home/user/.cache/huggingface \
|
| 8 |
-
HUGGINGFACE_HUB_CACHE=/home/user/.cache/huggingface
|
| 9 |
|
| 10 |
WORKDIR /app
|
|
|
|
| 11 |
COPY requirements.txt .
|
| 12 |
-
RUN pip install --no-cache-dir
|
| 13 |
-
|
|
|
|
| 14 |
|
|
|
|
| 15 |
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
| 1 |
+
FROM python:3.10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
+
|
| 5 |
COPY requirements.txt .
|
| 6 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 7 |
+
|
| 8 |
+
COPY ./app ./app
|
| 9 |
|
| 10 |
+
EXPOSE 7860
|
| 11 |
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app/main.py
CHANGED
|
@@ -1,33 +1,14 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
import torch
|
| 5 |
-
import os
|
| 6 |
-
import logging
|
| 7 |
-
|
| 8 |
-
# إعداد الـ logging
|
| 9 |
-
logging.basicConfig(level=logging.INFO)
|
| 10 |
-
logger = logging.getLogger(__name__)
|
| 11 |
|
| 12 |
app = FastAPI(title="MGZON FLAN-T5 API")
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN", None)
|
| 16 |
-
|
| 17 |
MODEL_NAME = "MGZON/mgzon-flan-t5-base"
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=HUGGING_FACE_TOKEN)
|
| 21 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 22 |
-
MODEL_NAME,
|
| 23 |
-
use_auth_token=HUGGING_FACE_TOKEN,
|
| 24 |
-
torch_dtype=torch.float16,
|
| 25 |
-
device_map="auto" # أو "cpu" لو مش فيه GPU
|
| 26 |
-
)
|
| 27 |
-
logger.info("Model and tokenizer loaded successfully")
|
| 28 |
-
except Exception as e:
|
| 29 |
-
logger.error(f"Failed to load model: {e}")
|
| 30 |
-
raise
|
| 31 |
|
| 32 |
class RequestText(BaseModel):
|
| 33 |
text: str
|
|
@@ -37,25 +18,11 @@ class RequestText(BaseModel):
|
|
| 37 |
async def health_check():
|
| 38 |
return {"status": "healthy"}
|
| 39 |
|
| 40 |
-
@app.post("/api/generate")
|
| 41 |
async def generate(req: RequestText):
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
**inputs,
|
| 46 |
-
max_length=req.max_length,
|
| 47 |
-
do_sample=True,
|
| 48 |
-
temperature=0.7,
|
| 49 |
-
top_p=0.9,
|
| 50 |
-
top_k=50,
|
| 51 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 52 |
-
num_return_sequences=1
|
| 53 |
-
)
|
| 54 |
-
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 55 |
-
return {"generated_text": text}
|
| 56 |
-
except Exception as e:
|
| 57 |
-
logger.error(f"Error generating text: {e}")
|
| 58 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 59 |
|
| 60 |
if __name__ == "__main__":
|
| 61 |
import uvicorn
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
app = FastAPI(title="MGZON FLAN-T5 API")
|
| 7 |
|
| 8 |
+
# تحميل النموذج من Hugging Face مباشرة
|
|
|
|
|
|
|
| 9 |
MODEL_NAME = "MGZON/mgzon-flan-t5-base"
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, device_map="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
class RequestText(BaseModel):
|
| 14 |
text: str
|
|
|
|
| 18 |
async def health_check():
|
| 19 |
return {"status": "healthy"}
|
| 20 |
|
| 21 |
+
@app.post("/api/generate/")
|
| 22 |
async def generate(req: RequestText):
|
| 23 |
+
inputs = tokenizer(req.text, return_tensors="pt").to(model.device)
|
| 24 |
+
outputs = model.generate(**inputs, max_length=req.max_length)
|
| 25 |
+
return {"generated_text": tokenizer.decode(outputs[0], skip_special_tokens=True)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
if __name__ == "__main__":
|
| 28 |
import uvicorn
|
requirements.txt
CHANGED
|
@@ -3,3 +3,4 @@ uvicorn[standard]
|
|
| 3 |
transformers
|
| 4 |
torch
|
| 5 |
accelerate
|
|
|
|
|
|
| 3 |
transformers
|
| 4 |
torch
|
| 5 |
accelerate
|
| 6 |
+
pydantic
|