MFF212 commited on
Commit
12e1f42
·
1 Parent(s): 2def7a1

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +11 -13
main.py CHANGED
@@ -2,7 +2,6 @@ from fastapi import FastAPI, UploadFile, File
2
  from fastapi.responses import HTMLResponse
3
  import pandas as pd
4
  import io
5
- import requests
6
  import time
7
 
8
  app = FastAPI()
@@ -45,6 +44,15 @@ async def upload_file(file: UploadFile = File(...)):
45
  cum_perc=lambda df: df['perc'].cumsum(),
46
  )
47
 
 
 
 
 
 
 
 
 
 
48
  result = (
49
  "<h1>Redundant IP Requests....</h1>"
50
  "<p>The Total API Requests from the sample logs are : {total_requests}</p>"
@@ -55,17 +63,7 @@ async def upload_file(file: UploadFile = File(...)):
55
  total_requests=logs_df.shape[0],
56
  redundant_requests=ip_address_count_df.shape[0],
57
  redundant_percentage=(ip_address_count_df.shape[0] / logs_df.shape[0]) * 100,
58
- dataframe_html = (
59
- ip_address_count_df.head(1000)
60
- .style.background_gradient(subset=['count', 'perc', 'cum_perc'], cmap='cividis')
61
- .format({'count': '{:,}', 'perc': '{:.1%}', 'cum_perc': '{:.1%}'})
62
- .render()
63
- .replace('\n', '') # Remove newline characters to format the HTML properly
64
- )
65
  )
66
 
67
- # # Save result in a new HTML file
68
- # with open("result.html", "w") as f:
69
- # f.write(result)
70
-
71
- return result
 
2
  from fastapi.responses import HTMLResponse
3
  import pandas as pd
4
  import io
 
5
  import time
6
 
7
  app = FastAPI()
 
44
  cum_perc=lambda df: df['perc'].cumsum(),
45
  )
46
 
47
+ dataframe_styled = (
48
+ ip_address_count_df.head(1000)
49
+ .style.background_gradient(subset=['count', 'perc', 'cum_perc'], cmap='cividis')
50
+ .format({'count': '{:,}', 'perc': '{:.1%}', 'cum_perc': '{:.1%}'})
51
+ )
52
+
53
+ # Render the styled DataFrame to HTML
54
+ styled_html = dataframe_styled.render()
55
+
56
  result = (
57
  "<h1>Redundant IP Requests....</h1>"
58
  "<p>The Total API Requests from the sample logs are : {total_requests}</p>"
 
63
  total_requests=logs_df.shape[0],
64
  redundant_requests=ip_address_count_df.shape[0],
65
  redundant_percentage=(ip_address_count_df.shape[0] / logs_df.shape[0]) * 100,
66
+ dataframe_html=styled_html,
 
 
 
 
 
 
67
  )
68
 
69
+ return HTMLResponse(content=result)