Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- app/__pycache__/draw_diagram.cpython-310.pyc +0 -0
- app/__pycache__/pages.cpython-310.pyc +0 -0
- app/draw_diagram.py +5 -1
- app/pages.py +62 -50
app/__pycache__/draw_diagram.cpython-310.pyc
CHANGED
Binary files a/app/__pycache__/draw_diagram.cpython-310.pyc and b/app/__pycache__/draw_diagram.cpython-310.pyc differ
|
|
app/__pycache__/pages.cpython-310.pyc
CHANGED
Binary files a/app/__pycache__/pages.cpython-310.pyc and b/app/__pycache__/pages.cpython-310.pyc differ
|
|
app/draw_diagram.py
CHANGED
@@ -104,7 +104,11 @@ def draw(folder_name, category_one, category_two, sort, num_sort, model_size_ran
|
|
104 |
ascending=False
|
105 |
).reset_index(drop=True)
|
106 |
|
107 |
-
styled_df = chart_data_table.style.
|
|
|
|
|
|
|
|
|
108 |
subset=[chart_data_table.columns[2]], color='yellow'
|
109 |
)
|
110 |
|
|
|
104 |
ascending=False
|
105 |
).reset_index(drop=True)
|
106 |
|
107 |
+
styled_df = chart_data_table.style.format(
|
108 |
+
{
|
109 |
+
chart_data_table.columns[i]: "{:.3f}" for i in range(2, len(chart_data_table.columns))
|
110 |
+
}
|
111 |
+
).highlight_max(
|
112 |
subset=[chart_data_table.columns[2]], color='yellow'
|
113 |
)
|
114 |
|
app/pages.py
CHANGED
@@ -11,15 +11,21 @@ def dashboard():
|
|
11 |
[![GitHub Repo stars](https://img.shields.io/github/stars/SeaEval/SeaEval?style=social)][gh]
|
12 |
""")
|
13 |
|
14 |
-
|
15 |
-
st.markdown("
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
st.divider()
|
20 |
|
21 |
-
|
22 |
-
st.markdown("#### What is [SeaEval](%s)?" % seaeval_url)
|
23 |
|
24 |
with st.container():
|
25 |
left_co, cent_co,last_co = st.columns(3)
|
@@ -64,13 +70,14 @@ def dashboard():
|
|
64 |
st.markdown("##### Citations")
|
65 |
|
66 |
st.markdown('''
|
67 |
-
|
68 |
@article{SeaEval,
|
69 |
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
|
70 |
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
|
71 |
journal={NAACL},
|
72 |
year={2024}
|
73 |
}
|
|
|
74 |
''')
|
75 |
|
76 |
|
@@ -80,11 +87,8 @@ def cross_lingual_consistency():
|
|
80 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
81 |
filters_leveltwo = [
|
82 |
'Cross-MMLU',
|
83 |
-
#'Cross-MMLU-No-Prompt',
|
84 |
'Cross-XQUAD',
|
85 |
-
#'Cross-XQUAD-No-Prompt',
|
86 |
'Cross-LogiQA',
|
87 |
-
#'Cross-LogiQA-No-Prompt',
|
88 |
]
|
89 |
|
90 |
category_one_dict = {
|
@@ -94,11 +98,8 @@ def cross_lingual_consistency():
|
|
94 |
|
95 |
category_two_dict = {
|
96 |
'Cross-MMLU' : 'cross_mmlu_no_prompt',
|
97 |
-
#'Cross-MMLU-No-Prompt' : 'cross_mmlu_no_prompt',
|
98 |
'Cross-XQUAD' : 'cross_xquad_no_prompt',
|
99 |
-
#'Cross-XQUAD-No-Prompt' : 'cross_xquad_no_prompt',
|
100 |
'Cross-LogiQA' : 'cross_logiqa_no_prompt',
|
101 |
-
#'Cross-LogiQA-No-Prompt': 'cross_logiqa_no_prompt',
|
102 |
}
|
103 |
|
104 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
@@ -128,7 +129,6 @@ def cultural_reasoning():
|
|
128 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
129 |
filters_leveltwo = [
|
130 |
'SG-EVAL-v2-MCQ',
|
131 |
-
#'SG EVAL V2 MCQ No Prompt',
|
132 |
'SG-EVAL-v2-Open-Ended',
|
133 |
'SG-EVAL-v1-Cleaned',
|
134 |
'SG-EVAL-v1',
|
@@ -145,7 +145,6 @@ def cultural_reasoning():
|
|
145 |
'SG-EVAL-v2-MCQ' : 'sg_eval_v2_mcq_no_prompt',
|
146 |
'SG-EVAL-v1' : 'sg_eval',
|
147 |
'SG-EVAL-v1-Cleaned' : 'sg_eval_v1_cleaned',
|
148 |
-
# 'SG EVAL V2 MCQ No Prompt': 'sg_eval_v2_mcq_no_prompt',
|
149 |
'SG-EVAL-v2-Open-Ended' : 'sg_eval_v2_open',
|
150 |
'US-EVAL' : 'us_eval',
|
151 |
'CN-EVAL' : 'cn_eval',
|
@@ -175,24 +174,22 @@ def general_reasoning():
|
|
175 |
filters_leveltwo = [
|
176 |
'IndoMMLU',
|
177 |
'MMLU',
|
178 |
-
#'MMLU-No-Prompt',
|
179 |
'CMMLU',
|
180 |
-
#'IndoMMLU-No-Prompt',
|
181 |
'C-Eval',
|
182 |
'ZBench',
|
183 |
]
|
184 |
|
185 |
-
category_one_dict = {
|
186 |
-
|
|
|
|
|
187 |
|
188 |
category_two_dict = {
|
189 |
'IndoMMLU': 'indommlu_no_prompt',
|
190 |
-
'MMLU': 'mmlu_no_prompt',
|
191 |
-
|
192 |
-
'
|
193 |
-
'
|
194 |
-
'ZBench': 'zbench',
|
195 |
-
#'IndoMMLU-No-Prompt': 'indommlu_no_prompt',
|
196 |
}
|
197 |
|
198 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
@@ -215,18 +212,23 @@ def flores():
|
|
215 |
st.title("Task: FLORES-Translation")
|
216 |
|
217 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
218 |
-
filters_leveltwo = [
|
|
|
219 |
'Vitenamese to English',
|
220 |
'Chinese to English',
|
221 |
'Malay to English'
|
222 |
]
|
223 |
|
224 |
-
category_one_dict = {
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
230 |
|
231 |
|
232 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
@@ -256,8 +258,10 @@ def emotion():
|
|
256 |
|
257 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
258 |
'Few Shot': 'few_shot'}
|
259 |
-
category_two_dict = {
|
260 |
-
|
|
|
|
|
261 |
|
262 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
263 |
with left:
|
@@ -285,11 +289,15 @@ def dialogue():
|
|
285 |
'DialogSum',
|
286 |
]
|
287 |
|
288 |
-
category_one_dict = {
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
|
|
|
|
|
|
|
|
293 |
|
294 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
295 |
with left:
|
@@ -319,17 +327,21 @@ def fundamental_nlp_tasks():
|
|
319 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
320 |
filters_leveltwo = ['OCNLI', 'C3', 'COLA', 'QQP', 'MNLI', 'QNLI', 'WNLI', 'RTE', 'MRPC']
|
321 |
|
322 |
-
category_one_dict = {
|
323 |
-
'
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
'
|
328 |
-
'
|
329 |
-
'
|
330 |
-
'
|
331 |
-
'
|
332 |
-
'
|
|
|
|
|
|
|
|
|
333 |
|
334 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
335 |
with left:
|
|
|
11 |
[![GitHub Repo stars](https://img.shields.io/github/stars/SeaEval/SeaEval?style=social)][gh]
|
12 |
""")
|
13 |
|
14 |
+
|
15 |
+
st.markdown("""
|
16 |
+
### Changelog
|
17 |
+
|
18 |
+
- **Dec 2024**:
|
19 |
+
- Updated results for **Cross-MMLU**, **Cross-LogiQA**, **Cross-XQuad**, **MMLU**, **IndoMMLU**, and **SG-Eval-v2** with new prompts (simple prompts to encourage reasoning).
|
20 |
+
- Added new models: **SEA-LION v3**, **Gemma-2**, and **Sailor 2**.
|
21 |
+
|
22 |
+
- **Nov 2024**:
|
23 |
+
- Updated layout and added support for comparison between models with similar sizes.
|
24 |
+
""")
|
25 |
|
26 |
st.divider()
|
27 |
|
28 |
+
st.markdown("#### What is [SeaEval](https://seaeval.github.io/)?")
|
|
|
29 |
|
30 |
with st.container():
|
31 |
left_co, cent_co,last_co = st.columns(3)
|
|
|
70 |
st.markdown("##### Citations")
|
71 |
|
72 |
st.markdown('''
|
73 |
+
```
|
74 |
@article{SeaEval,
|
75 |
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
|
76 |
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
|
77 |
journal={NAACL},
|
78 |
year={2024}
|
79 |
}
|
80 |
+
```
|
81 |
''')
|
82 |
|
83 |
|
|
|
87 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
88 |
filters_leveltwo = [
|
89 |
'Cross-MMLU',
|
|
|
90 |
'Cross-XQUAD',
|
|
|
91 |
'Cross-LogiQA',
|
|
|
92 |
]
|
93 |
|
94 |
category_one_dict = {
|
|
|
98 |
|
99 |
category_two_dict = {
|
100 |
'Cross-MMLU' : 'cross_mmlu_no_prompt',
|
|
|
101 |
'Cross-XQUAD' : 'cross_xquad_no_prompt',
|
|
|
102 |
'Cross-LogiQA' : 'cross_logiqa_no_prompt',
|
|
|
103 |
}
|
104 |
|
105 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
|
|
129 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
130 |
filters_leveltwo = [
|
131 |
'SG-EVAL-v2-MCQ',
|
|
|
132 |
'SG-EVAL-v2-Open-Ended',
|
133 |
'SG-EVAL-v1-Cleaned',
|
134 |
'SG-EVAL-v1',
|
|
|
145 |
'SG-EVAL-v2-MCQ' : 'sg_eval_v2_mcq_no_prompt',
|
146 |
'SG-EVAL-v1' : 'sg_eval',
|
147 |
'SG-EVAL-v1-Cleaned' : 'sg_eval_v1_cleaned',
|
|
|
148 |
'SG-EVAL-v2-Open-Ended' : 'sg_eval_v2_open',
|
149 |
'US-EVAL' : 'us_eval',
|
150 |
'CN-EVAL' : 'cn_eval',
|
|
|
174 |
filters_leveltwo = [
|
175 |
'IndoMMLU',
|
176 |
'MMLU',
|
|
|
177 |
'CMMLU',
|
|
|
178 |
'C-Eval',
|
179 |
'ZBench',
|
180 |
]
|
181 |
|
182 |
+
category_one_dict = {
|
183 |
+
'Zero Shot': 'zero_shot',
|
184 |
+
'Few Shot' : 'few_shot'
|
185 |
+
}
|
186 |
|
187 |
category_two_dict = {
|
188 |
'IndoMMLU': 'indommlu_no_prompt',
|
189 |
+
'MMLU' : 'mmlu_no_prompt',
|
190 |
+
'C-Eval' : 'c_eval',
|
191 |
+
'CMMLU' : 'cmmlu',
|
192 |
+
'ZBench' : 'zbench',
|
|
|
|
|
193 |
}
|
194 |
|
195 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
|
|
212 |
st.title("Task: FLORES-Translation")
|
213 |
|
214 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
215 |
+
filters_leveltwo = [
|
216 |
+
'Indonesian to English',
|
217 |
'Vitenamese to English',
|
218 |
'Chinese to English',
|
219 |
'Malay to English'
|
220 |
]
|
221 |
|
222 |
+
category_one_dict = {
|
223 |
+
'Zero Shot': 'zero_shot',
|
224 |
+
'Few Shot' : 'few_shot'
|
225 |
+
}
|
226 |
+
category_two_dict = {
|
227 |
+
'Indonesian to English': 'ind2eng',
|
228 |
+
'Vitenamese to English': 'vie2eng',
|
229 |
+
'Chinese to English' : 'zho2eng',
|
230 |
+
'Malay to English' : 'zsm2eng'
|
231 |
+
}
|
232 |
|
233 |
|
234 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
|
|
258 |
|
259 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
260 |
'Few Shot': 'few_shot'}
|
261 |
+
category_two_dict = {
|
262 |
+
'Indonesian Emotion Classification': 'ind_emotion',
|
263 |
+
'SST2' : 'sst2'
|
264 |
+
}
|
265 |
|
266 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
267 |
with left:
|
|
|
289 |
'DialogSum',
|
290 |
]
|
291 |
|
292 |
+
category_one_dict = {
|
293 |
+
'Zero Shot': 'zero_shot',
|
294 |
+
'Few Shot' : 'few_shot'
|
295 |
+
}
|
296 |
+
category_two_dict = {
|
297 |
+
'DREAM' : 'dream',
|
298 |
+
'SAMSum' : 'samsum',
|
299 |
+
'DialogSum': 'dialogsum'
|
300 |
+
}
|
301 |
|
302 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
303 |
with left:
|
|
|
327 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
328 |
filters_leveltwo = ['OCNLI', 'C3', 'COLA', 'QQP', 'MNLI', 'QNLI', 'WNLI', 'RTE', 'MRPC']
|
329 |
|
330 |
+
category_one_dict = {
|
331 |
+
'Zero Shot': 'zero_shot',
|
332 |
+
'Few Shot' : 'few_shot'
|
333 |
+
}
|
334 |
+
category_two_dict = {
|
335 |
+
'OCNLI': 'ocnli',
|
336 |
+
'C3' : 'c3',
|
337 |
+
'COLA' : 'cola',
|
338 |
+
'QQP' : 'qqp',
|
339 |
+
'MNLI' : 'mnli',
|
340 |
+
'QNLI' : 'qnli',
|
341 |
+
'WNLI' : 'wnli',
|
342 |
+
'RTE' : 'rte',
|
343 |
+
'MRPC' : 'mrpc'
|
344 |
+
}
|
345 |
|
346 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
347 |
with left:
|