AudioBench-Leaderboard / app /draw_diagram.py
zhuohan-7's picture
Upload folder using huggingface_hub
1d32376 verified
raw
history blame
9.14 kB
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
from streamlit.components.v1 import html
# from PIL import Image
from app.show_examples import *
from app.content import *
import pandas as pd
from model_information import get_dataframe
info_df = get_dataframe()
def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
folder = f"./results/{metrics}/"
# Load the results from CSV
data_path = f'{folder}/{category_name.lower()}.csv'
chart_data = pd.read_csv(data_path).round(3)
new_dataset_name = dataset_name.replace('-', '_').lower()
chart_data = chart_data[['Model', new_dataset_name]]
# Rename to proper display name
new_dataset_name = dataname_column_rename_in_table[new_dataset_name]
chart_data = chart_data.rename(columns=dataname_column_rename_in_table)
st.markdown("""
<style>
.stMultiSelect [data-baseweb=select] span {
max-width: 800px;
font-size: 0.9rem;
background-color: #3C6478 !important; /* Background color for selected items */
color: white; /* Change text color */
back
}
</style>
""", unsafe_allow_html=True)
# remap model names
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x))
models = st.multiselect("Please choose the model",
sorted(chart_data['model_show'].tolist()),
default = sorted(chart_data['model_show'].tolist()),
)
chart_data = chart_data[chart_data['model_show'].isin(models)]
chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=cus_sort).dropna(axis=0)
if len(chart_data) == 0: return
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
'''
Show Table
'''
with st.container():
st.markdown('##### TABLE')
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
chart_data['model_link'] = chart_data['model_show'].map(model_link)
chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]
# Format numeric columns to 2 decimal places
chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
cur_dataset_name = chart_data_table.columns[1]
def highlight_first_element(x):
# Create a DataFrame with the same shape as the input
df_style = pd.DataFrame('', index=x.index, columns=x.columns)
# Apply background color to the first element in row 0 (df[0][0])
df_style.iloc[0, 1] = 'background-color: #b0c1d7; color: white'
return df_style
if cur_dataset_name in [
'librispeech_test_clean',
'librispeech_test_other',
'common_voice_15_en_test',
'peoples_speech_test',
'gigaspeech_test',
'earnings21_test',
'earnings22_test',
'tedlium3_test',
'tedlium3_long_form_test',
'imda_part1_asr_test',
'imda_part2_asr_test',
'aishell_asr_zh_test',
]:
chart_data_table = chart_data_table.sort_values(
by=chart_data_table.columns[1],
ascending=True
).reset_index(drop=True)
else:
chart_data_table = chart_data_table.sort_values(
by=chart_data_table.columns[1],
ascending=False
).reset_index(drop=True)
# styled_df = chart_data_table.style.highlight_min(
# subset=[chart_data_table.columns[1]], color='yellow'
# )
styled_df = chart_data_table.style.apply(
highlight_first_element, axis=None
)
# else:
# # styled_df = chart_data_table.style.highlight_max(
# # subset=[chart_data_table.columns[1]], color='yellow'
# # )
# styled_df = chart_data_table.style.apply(
# highlight_first_element, axis=None
# )
st.dataframe(
styled_df,
column_config={
'model_show': 'Model',
chart_data_table.columns[1]: {'alignment': 'left'},
"model_link": st.column_config.LinkColumn(
"Model Link",
),
},
hide_index=True,
use_container_width=True
)
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
'''
Show Chart
'''
# Initialize a session state variable for toggling the chart visibility
if "show_chart" not in st.session_state:
st.session_state.show_chart = False
# Create a button to toggle visibility
if st.button("Show Chart"):
st.session_state.show_chart = not st.session_state.show_chart
if st.session_state.show_chart:
with st.container():
st.markdown('##### CHART')
# Get Values
data_values = chart_data.iloc[:, 1]
# Calculate Q1 and Q3
q1 = data_values.quantile(0.25)
q3 = data_values.quantile(0.75)
# Calculate IQR
iqr = q3 - q1
# Define lower and upper bounds (1.5*IQR is a common threshold)
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# Filter data within the bounds
filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)]
# Calculate min and max values after outlier handling
min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3)
max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3)
options = {
# "title": {"text": f"{dataset_name}"},
"tooltip": {
"trigger": "axis",
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
"triggerOn": 'mousemove',
},
"legend": {"data": ['Overall Accuracy']},
"toolbox": {"feature": {"saveAsImage": {}}},
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
"xAxis": [
{
"type": "category",
"boundaryGap": True,
"triggerEvent": True,
"data": chart_data['model_show'].tolist(),
}
],
"yAxis": [{"type": "value",
"min": min_value,
"max": max_value,
"boundaryGap": True
# "splitNumber": 10
}],
"series": [{
"name": f"{dataset_name}",
"type": "bar",
"data": chart_data[f'{new_dataset_name}'].tolist(),
}],
}
events = {
"click": "function(params) { return params.value }"
}
value = st_echarts(options=options, events=events, height="500px")
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
'''
Show Examples
'''
# Initialize a session state variable for toggling the chart visibility
if "show_examples" not in st.session_state:
st.session_state.show_examples = False
# Create a button to toggle visibility
if st.button("Show Examples"):
st.session_state.show_examples = not st.session_state.show_examples
if st.session_state.show_examples:
st.markdown('To be implemented')
# # if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']:
# if dataset_name in []:
# pass
# else:
# show_examples(category_name, dataset_name, chart_data['Model'].tolist(), display_model_names)