AudioBench-Leaderboard / app /summarization.py
zhuohan-7's picture
Upload folder using huggingface_hub
1d32376 verified
raw
history blame
4.69 kB
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
from streamlit.components.v1 import html
# from PIL import Image
from app.show_examples import *
from app.content import *
import pandas as pd
from typing import List
from model_information import get_dataframe
info_df = get_dataframe()
metrics_info = metrics_info
def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
# combine chart data from multiple sources
chart_data = pd.DataFrame()
for metrics in metrics_lists:
folder = f"./results/{metrics}/"
data_path = f'{folder}/{task_name.lower()}.csv'
one_chart_data = pd.read_csv(data_path).round(3)
if len(chart_data) == 0:
chart_data = one_chart_data
else:
chart_data = pd.merge(chart_data, one_chart_data, on='Model', how='outer')
selected_columns = [i for i in chart_data.columns if i != 'Model']
chart_data['Average'] = chart_data[selected_columns].mean(axis=1)
# Update dataset name in table
chart_data = chart_data.rename(columns=dataname_column_rename_in_table)
st.markdown("""
<style>
.stMultiSelect [data-baseweb=select] span {
max-width: 800px;
font-size: 0.9rem;
background-color: #3C6478 !important; /* Background color for selected items */
color: white; /* Change text color */
back
}
</style>
""", unsafe_allow_html=True)
# remap model names
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x))
models = st.multiselect("Please choose the model",
sorted(chart_data['model_show'].tolist()),
default = sorted(chart_data['model_show'].tolist()),
# key=f"multiselect_{task_name}_{metrics}"
)
chart_data = chart_data[chart_data['model_show'].isin(models)].dropna(axis=0)
# chart_data = chart_data.sort_values(by=['Average'], ascending=True).dropna(axis=0)
if len(chart_data) == 0: return
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
'''
Show Table
'''
with st.container():
st.markdown(f'##### TABLE')
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
chart_data['model_link'] = chart_data['model_show'].map(model_link)
tabel_columns = [i for i in chart_data.columns if i not in ['Model', 'model_show']]
column_to_front = 'Average'
new_order = [column_to_front] + [col for col in tabel_columns if col != column_to_front]
chart_data_table = chart_data[['model_show'] + new_order]
# Format numeric columns to 2 decimal places
chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
if metrics in ['wer']:
ascend = True
else:
ascend= False
chart_data_table = chart_data_table.sort_values(
by=['Average'],
ascending=ascend
).reset_index(drop=True)
# Highlight the best performing model
def highlight_first_element(x):
# Create a DataFrame with the same shape as the input
df_style = pd.DataFrame('', index=x.index, columns=x.columns)
# Apply background color to the first element in row 0 (df[0][0])
df_style.iloc[0, 1] = 'background-color: #b0c1d7; color: white'
return df_style
styled_df = chart_data_table.style.apply(
highlight_first_element, axis=None
)
st.dataframe(
styled_df,
column_config={
'model_show': 'Model',
chart_data_table.columns[1]: {'alignment': 'left'},
"model_link": st.column_config.LinkColumn(
"Model Link",
),
},
hide_index=True,
use_container_width=True
)
#for metrics in metrics_lists:
# Only report the last metrics
st.markdown(f'###### Metric: {metrics_info[metrics]}')