Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from streamlit_echarts import st_echarts | |
from streamlit.components.v1 import html | |
# from PIL import Image | |
from app.show_examples import * | |
from app.content import * | |
import pandas as pd | |
from typing import List | |
from model_information import get_dataframe | |
info_df = get_dataframe() | |
metrics_info = metrics_info | |
def sum_table_mulit_metrix(task_name, metrics_lists: List[str]): | |
# combine chart data from multiple sources | |
chart_data = pd.DataFrame() | |
for metrics in metrics_lists: | |
folder = f"./results/{metrics}/" | |
data_path = f'{folder}/{task_name.lower()}.csv' | |
one_chart_data = pd.read_csv(data_path).round(3) | |
if len(chart_data) == 0: | |
chart_data = one_chart_data | |
else: | |
chart_data = pd.merge(chart_data, one_chart_data, on='Model', how='outer') | |
selected_columns = [i for i in chart_data.columns if i != 'Model'] | |
chart_data['Average'] = chart_data[selected_columns].mean(axis=1) | |
# Update dataset name in table | |
chart_data = chart_data.rename(columns=dataname_column_rename_in_table) | |
st.markdown(""" | |
<style> | |
.stMultiSelect [data-baseweb=select] span { | |
max-width: 800px; | |
font-size: 0.9rem; | |
background-color: #3C6478 !important; /* Background color for selected items */ | |
color: white; /* Change text color */ | |
back | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# remap model names | |
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])} | |
chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x)) | |
models = st.multiselect("Please choose the model", | |
sorted(chart_data['model_show'].tolist()), | |
default = sorted(chart_data['model_show'].tolist()), | |
# key=f"multiselect_{task_name}_{metrics}" | |
) | |
chart_data = chart_data[chart_data['model_show'].isin(models)].dropna(axis=0) | |
# chart_data = chart_data.sort_values(by=['Average'], ascending=True).dropna(axis=0) | |
if len(chart_data) == 0: return | |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = | |
''' | |
Show Table | |
''' | |
with st.container(): | |
st.markdown(f'##### TABLE') | |
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])} | |
chart_data['model_link'] = chart_data['model_show'].map(model_link) | |
tabel_columns = [i for i in chart_data.columns if i not in ['Model', 'model_show']] | |
column_to_front = 'Average' | |
new_order = [column_to_front] + [col for col in tabel_columns if col != column_to_front] | |
chart_data_table = chart_data[['model_show'] + new_order] | |
# Format numeric columns to 2 decimal places | |
chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x)) | |
if metrics in ['wer']: | |
ascend = True | |
else: | |
ascend= False | |
chart_data_table = chart_data_table.sort_values( | |
by=['Average'], | |
ascending=ascend | |
).reset_index(drop=True) | |
# Highlight the best performing model | |
def highlight_first_element(x): | |
# Create a DataFrame with the same shape as the input | |
df_style = pd.DataFrame('', index=x.index, columns=x.columns) | |
# Apply background color to the first element in row 0 (df[0][0]) | |
df_style.iloc[0, 1] = 'background-color: #b0c1d7; color: white' | |
return df_style | |
styled_df = chart_data_table.style.apply( | |
highlight_first_element, axis=None | |
) | |
st.dataframe( | |
styled_df, | |
column_config={ | |
'model_show': 'Model', | |
chart_data_table.columns[1]: {'alignment': 'left'}, | |
"model_link": st.column_config.LinkColumn( | |
"Model Link", | |
), | |
}, | |
hide_index=True, | |
use_container_width=True | |
) | |
#for metrics in metrics_lists: | |
# Only report the last metrics | |
st.markdown(f'###### Metric: {metrics_info[metrics]}') | |