studfaceval / HF_pipeline.py
MENG21's picture
b09a689
raw
history blame contribute delete
776 Bytes
from transformers import pipeline
import streamlit as st
MODEL_URLS = {
"DISTILIBERT MODEL": "MENG21/stud-fac-eval-distilbert-base-uncased",
"BERT-LARGE MODEL": "MENG21/stud-fac-eval-bert-large-uncased",
"BERT-BASE MODEL": "MENG21/stud-fac-eval-bert-base-uncased"
}
@st.cache_resource(experimental_allow_widgets=True, show_spinner=False)
def analyze_sintement(text, selected_model):
# st.write(selected_model)
# API_URL = MODEL_URLS.get(selected_model, MODEL_URLS[selected_model]) # Get API URL based on selected model
# Create a text classification pipeline
classifier = pipeline("text-classification", model=MODEL_URLS[selected_model])
result = classifier(text)
# st.text(result)
return result[0]['label'], result[0]['score']