ML-Starter / knowledge_base /generative /molecule_generation.py
emreatilgan's picture
feat: Initialize mcp_server with embedding and loader modules
9ce984a
"""
Title: Drug Molecule Generation with VAE
Author: [Victor Basu](https://www.linkedin.com/in/victor-basu-520958147)
Date created: 2022/03/10
Last modified: 2024/12/17
Description: Implementing a Convolutional Variational AutoEncoder (VAE) for Drug Discovery.
Accelerator: GPU
"""
"""
## Introduction
In this example, we use a Variational Autoencoder to generate molecules for drug discovery.
We use the research papers
[Automatic chemical design using a data-driven continuous representation of molecules](https://arxiv.org/abs/1610.02415)
and [MolGAN: An implicit generative model for small molecular graphs](https://arxiv.org/abs/1805.11973)
as a reference.
The model described in the paper **Automatic chemical design using a data-driven
continuous representation of molecules** generates new molecules via efficient exploration
of open-ended spaces of chemical compounds. The model consists of
three components: Encoder, Decoder and Predictor. The Encoder converts the discrete
representation of a molecule into a real-valued continuous vector, and the Decoder
converts these continuous vectors back to discrete molecule representations. The
Predictor estimates chemical properties from the latent continuous vector representation
of the molecule. Continuous representations allow the use of gradient-based
optimization to efficiently guide the search for optimized functional compounds.
![intro](https://bit.ly/3CtPMzM)
**Figure (a)** - A diagram of the autoencoder used for molecule design, including the
joint property prediction model. Starting from a discrete molecule representation, such
as a SMILES string, the encoder network converts each molecule into a vector in the
latent space, which is effectively a continuous molecule representation. Given a point
in the latent space, the decoder network produces a corresponding SMILES string. A
multilayer perceptron network estimates the value of target properties associated with
each molecule.
**Figure (b)** - Gradient-based optimization in continuous latent space. After training a
surrogate model `f(z)` to predict the properties of molecules based on their latent
representation `z`, we can optimize `f(z)` with respect to `z` to find new latent
representations expected to match specific desired properties. These new latent
representations can then be decoded into SMILES strings, at which point their properties
can be tested empirically.
For an explanation and implementation of MolGAN, please refer to the Keras Example
[**WGAN-GP with R-GCN for the generation of small molecular graphs**](https://bit.ly/3pU6zXK) by
Alexander Kensert. Many of the functions used in the present example are from the above Keras example.
"""
"""
## Setup
RDKit is an open source toolkit for cheminformatics and machine learning. This toolkit come in handy
if one is into drug discovery domain. In this example, RDKit is used to conveniently
and efficiently transform SMILES to molecule objects, and then from those obtain sets of atoms
and bonds.
Quoting from
[WGAN-GP with R-GCN for the generation of small molecular graphs](https://keras.io/examples/generative/wgan-graphs/)):
**"SMILES expresses the structure of a given molecule in the form of an ASCII string.
The SMILES string is a compact encoding which, for smaller molecules, is relatively human-readable.
Encoding molecules as a string both alleviates and facilitates database and/or web searching
of a given molecule. RDKit uses algorithms to accurately transform a given SMILES to
a molecule object, which can then be used to compute a great number of molecular properties/features."**
"""
"""shell
pip -q install rdkit-pypi==2021.9.4
"""
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import ast
import pandas as pd
import numpy as np
import tensorflow as tf
import keras
from keras import layers
from keras import ops
import matplotlib.pyplot as plt
from rdkit import Chem, RDLogger
from rdkit.Chem import BondType
from rdkit.Chem.Draw import MolsToGridImage
RDLogger.DisableLog("rdApp.*")
"""
## Dataset
We use the [**ZINC – A Free Database of Commercially Available Compounds for
Virtual Screening**](https://bit.ly/3IVBI4x) dataset. The dataset comes with molecule
formula in SMILE representation along with their respective molecular properties such as
**logP** (water–octanal partition coefficient), **SAS** (synthetic
accessibility score) and **QED** (Qualitative Estimate of Drug-likeness).
"""
csv_path = keras.utils.get_file(
"250k_rndm_zinc_drugs_clean_3.csv",
"https://raw.githubusercontent.com/aspuru-guzik-group/chemical_vae/master/models/zinc_properties/250k_rndm_zinc_drugs_clean_3.csv",
)
df = pd.read_csv(csv_path)
df["smiles"] = df["smiles"].apply(lambda s: s.replace("\n", ""))
df.head()
"""
## Hyperparameters
"""
SMILE_CHARSET = '["C", "B", "F", "I", "H", "O", "N", "S", "P", "Cl", "Br"]'
bond_mapping = {"SINGLE": 0, "DOUBLE": 1, "TRIPLE": 2, "AROMATIC": 3}
bond_mapping.update(
{0: BondType.SINGLE, 1: BondType.DOUBLE, 2: BondType.TRIPLE, 3: BondType.AROMATIC}
)
SMILE_CHARSET = ast.literal_eval(SMILE_CHARSET)
MAX_MOLSIZE = max(df["smiles"].str.len())
SMILE_to_index = dict((c, i) for i, c in enumerate(SMILE_CHARSET))
index_to_SMILE = dict((i, c) for i, c in enumerate(SMILE_CHARSET))
atom_mapping = dict(SMILE_to_index)
atom_mapping.update(index_to_SMILE)
BATCH_SIZE = 100
EPOCHS = 10
VAE_LR = 5e-4
NUM_ATOMS = 120 # Maximum number of atoms
ATOM_DIM = len(SMILE_CHARSET) # Number of atom types
BOND_DIM = 4 + 1 # Number of bond types
LATENT_DIM = 435 # Size of the latent space
def smiles_to_graph(smiles):
# Converts SMILES to molecule object
molecule = Chem.MolFromSmiles(smiles)
# Initialize adjacency and feature tensor
adjacency = np.zeros((BOND_DIM, NUM_ATOMS, NUM_ATOMS), "float32")
features = np.zeros((NUM_ATOMS, ATOM_DIM), "float32")
# loop over each atom in molecule
for atom in molecule.GetAtoms():
i = atom.GetIdx()
atom_type = atom_mapping[atom.GetSymbol()]
features[i] = np.eye(ATOM_DIM)[atom_type]
# loop over one-hop neighbors
for neighbor in atom.GetNeighbors():
j = neighbor.GetIdx()
bond = molecule.GetBondBetweenAtoms(i, j)
bond_type_idx = bond_mapping[bond.GetBondType().name]
adjacency[bond_type_idx, [i, j], [j, i]] = 1
# Where no bond, add 1 to last channel (indicating "non-bond")
# Notice: channels-first
adjacency[-1, np.sum(adjacency, axis=0) == 0] = 1
# Where no atom, add 1 to last column (indicating "non-atom")
features[np.where(np.sum(features, axis=1) == 0)[0], -1] = 1
return adjacency, features
def graph_to_molecule(graph):
# Unpack graph
adjacency, features = graph
# RWMol is a molecule object intended to be edited
molecule = Chem.RWMol()
# Remove "no atoms" & atoms with no bonds
keep_idx = np.where(
(np.argmax(features, axis=1) != ATOM_DIM - 1)
& (np.sum(adjacency[:-1], axis=(0, 1)) != 0)
)[0]
features = features[keep_idx]
adjacency = adjacency[:, keep_idx, :][:, :, keep_idx]
# Add atoms to molecule
for atom_type_idx in np.argmax(features, axis=1):
atom = Chem.Atom(atom_mapping[atom_type_idx])
_ = molecule.AddAtom(atom)
# Add bonds between atoms in molecule; based on the upper triangles
# of the [symmetric] adjacency tensor
(bonds_ij, atoms_i, atoms_j) = np.where(np.triu(adjacency) == 1)
for bond_ij, atom_i, atom_j in zip(bonds_ij, atoms_i, atoms_j):
if atom_i == atom_j or bond_ij == BOND_DIM - 1:
continue
bond_type = bond_mapping[bond_ij]
molecule.AddBond(int(atom_i), int(atom_j), bond_type)
# Sanitize the molecule; for more information on sanitization, see
# https://www.rdkit.org/docs/RDKit_Book.html#molecular-sanitization
flag = Chem.SanitizeMol(molecule, catchErrors=True)
# Let's be strict. If sanitization fails, return None
if flag != Chem.SanitizeFlags.SANITIZE_NONE:
return None
return molecule
"""
## Generate training set
"""
train_df = df.sample(frac=0.75, random_state=42) # random state is a seed value
train_df.reset_index(drop=True, inplace=True)
adjacency_tensor, feature_tensor, qed_tensor = [], [], []
for idx in range(8000):
adjacency, features = smiles_to_graph(train_df.loc[idx]["smiles"])
qed = train_df.loc[idx]["qed"]
adjacency_tensor.append(adjacency)
feature_tensor.append(features)
qed_tensor.append(qed)
adjacency_tensor = np.array(adjacency_tensor)
feature_tensor = np.array(feature_tensor)
qed_tensor = np.array(qed_tensor)
class RelationalGraphConvLayer(keras.layers.Layer):
def __init__(
self,
units=128,
activation="relu",
use_bias=False,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
**kwargs
):
super().__init__(**kwargs)
self.units = units
self.activation = keras.activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = keras.initializers.get(kernel_initializer)
self.bias_initializer = keras.initializers.get(bias_initializer)
self.kernel_regularizer = keras.regularizers.get(kernel_regularizer)
self.bias_regularizer = keras.regularizers.get(bias_regularizer)
def build(self, input_shape):
bond_dim = input_shape[0][1]
atom_dim = input_shape[1][2]
self.kernel = self.add_weight(
shape=(bond_dim, atom_dim, self.units),
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
trainable=True,
name="W",
dtype="float32",
)
if self.use_bias:
self.bias = self.add_weight(
shape=(bond_dim, 1, self.units),
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
trainable=True,
name="b",
dtype="float32",
)
self.built = True
def call(self, inputs, training=False):
adjacency, features = inputs
# Aggregate information from neighbors
x = ops.matmul(adjacency, features[:, None])
# Apply linear transformation
x = ops.matmul(x, self.kernel)
if self.use_bias:
x += self.bias
# Reduce bond types dim
x_reduced = ops.sum(x, axis=1)
# Apply non-linear transformation
return self.activation(x_reduced)
"""
## Build the Encoder and Decoder
The Encoder takes as input a molecule's graph adjacency matrix and feature matrix.
These features are processed via a Graph Convolution layer, then are flattened and
processed by several Dense layers to derive `z_mean` and `log_var`, the
latent-space representation of the molecule.
**Graph Convolution layer**: The relational graph convolution layer implements
non-linearly transformed neighbourhood aggregations. We can define these layers as
follows:
`H_hat**(l+1) = σ(D_hat**(-1) * A_hat * H_hat**(l+1) * W**(l))`
Where `σ` denotes the non-linear transformation (commonly a ReLU activation), `A` the
adjacency tensor, `H_hat**(l)` the feature tensor at the `l-th` layer, `D_hat**(-1)` the
inverse diagonal degree tensor of `A_hat`, and `W_hat**(l)` the trainable weight tensor
at the `l-th` layer. Specifically, for each bond type (relation), the degree tensor
expresses, in the diagonal, the number of bonds attached to each atom.
Source:
[WGAN-GP with R-GCN for the generation of small molecular graphs](https://keras.io/examples/generative/wgan-graphs/))
The Decoder takes as input the latent-space representation and predicts
the graph adjacency matrix and feature matrix of the corresponding molecules.
"""
def get_encoder(
gconv_units, latent_dim, adjacency_shape, feature_shape, dense_units, dropout_rate
):
adjacency = layers.Input(shape=adjacency_shape)
features = layers.Input(shape=feature_shape)
# Propagate through one or more graph convolutional layers
features_transformed = features
for units in gconv_units:
features_transformed = RelationalGraphConvLayer(units)(
[adjacency, features_transformed]
)
# Reduce 2-D representation of molecule to 1-D
x = layers.GlobalAveragePooling1D()(features_transformed)
# Propagate through one or more densely connected layers
for units in dense_units:
x = layers.Dense(units, activation="relu")(x)
x = layers.Dropout(dropout_rate)(x)
z_mean = layers.Dense(latent_dim, dtype="float32", name="z_mean")(x)
log_var = layers.Dense(latent_dim, dtype="float32", name="log_var")(x)
encoder = keras.Model([adjacency, features], [z_mean, log_var], name="encoder")
return encoder
def get_decoder(dense_units, dropout_rate, latent_dim, adjacency_shape, feature_shape):
latent_inputs = keras.Input(shape=(latent_dim,))
x = latent_inputs
for units in dense_units:
x = layers.Dense(units, activation="tanh")(x)
x = layers.Dropout(dropout_rate)(x)
# Map outputs of previous layer (x) to [continuous] adjacency tensors (x_adjacency)
x_adjacency = layers.Dense(np.prod(adjacency_shape))(x)
x_adjacency = layers.Reshape(adjacency_shape)(x_adjacency)
# Symmetrify tensors in the last two dimensions
x_adjacency = (x_adjacency + ops.transpose(x_adjacency, (0, 1, 3, 2))) / 2
x_adjacency = layers.Softmax(axis=1)(x_adjacency)
# Map outputs of previous layer (x) to [continuous] feature tensors (x_features)
x_features = layers.Dense(np.prod(feature_shape))(x)
x_features = layers.Reshape(feature_shape)(x_features)
x_features = layers.Softmax(axis=2)(x_features)
decoder = keras.Model(
latent_inputs, outputs=[x_adjacency, x_features], name="decoder"
)
return decoder
"""
## Build the Sampling layer
"""
class Sampling(layers.Layer):
def __init__(self, seed=None, **kwargs):
super().__init__(**kwargs)
self.seed_generator = keras.random.SeedGenerator(seed)
def call(self, inputs):
z_mean, z_log_var = inputs
batch, dim = ops.shape(z_log_var)
epsilon = keras.random.normal(shape=(batch, dim), seed=self.seed_generator)
return z_mean + ops.exp(0.5 * z_log_var) * epsilon
"""
## Build the VAE
This model is trained to optimize four losses:
* Categorical crossentropy
* KL divergence loss
* Property prediction loss
* Graph loss (gradient penalty)
The categorical crossentropy loss function measures the model's
reconstruction accuracy. The Property prediction loss estimates the mean squared
error between predicted and actual properties after running the latent representation
through a property prediction model. The property
prediction of the model is optimized via binary crossentropy. The gradient
penalty is further guided by the model's property (QED) prediction.
A gradient penalty is an alternative soft constraint on the
1-Lipschitz continuity as an improvement upon the gradient clipping scheme from the
original neural network
("1-Lipschitz continuity" means that the norm of the gradient is at most 1 at every single
point of the function).
It adds a regularization term to the loss function.
"""
class MoleculeGenerator(keras.Model):
def __init__(self, encoder, decoder, max_len, seed=None, **kwargs):
super().__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
self.property_prediction_layer = layers.Dense(1)
self.max_len = max_len
self.seed_generator = keras.random.SeedGenerator(seed)
self.sampling_layer = Sampling(seed=seed)
self.train_total_loss_tracker = keras.metrics.Mean(name="train_total_loss")
self.val_total_loss_tracker = keras.metrics.Mean(name="val_total_loss")
def train_step(self, data):
adjacency_tensor, feature_tensor, qed_tensor = data[0]
graph_real = [adjacency_tensor, feature_tensor]
self.batch_size = ops.shape(qed_tensor)[0]
with tf.GradientTape() as tape:
z_mean, z_log_var, qed_pred, gen_adjacency, gen_features = self(
graph_real, training=True
)
graph_generated = [gen_adjacency, gen_features]
total_loss = self._compute_loss(
z_log_var, z_mean, qed_tensor, qed_pred, graph_real, graph_generated
)
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.train_total_loss_tracker.update_state(total_loss)
return {"loss": self.train_total_loss_tracker.result()}
def _compute_loss(
self, z_log_var, z_mean, qed_true, qed_pred, graph_real, graph_generated
):
adjacency_real, features_real = graph_real
adjacency_gen, features_gen = graph_generated
adjacency_loss = ops.mean(
ops.sum(
keras.losses.categorical_crossentropy(
adjacency_real, adjacency_gen, axis=1
),
axis=(1, 2),
)
)
features_loss = ops.mean(
ops.sum(
keras.losses.categorical_crossentropy(features_real, features_gen),
axis=(1),
)
)
kl_loss = -0.5 * ops.sum(
1 + z_log_var - z_mean**2 - ops.minimum(ops.exp(z_log_var), 1e6), 1
)
kl_loss = ops.mean(kl_loss)
property_loss = ops.mean(
keras.losses.binary_crossentropy(qed_true, ops.squeeze(qed_pred, axis=1))
)
graph_loss = self._gradient_penalty(graph_real, graph_generated)
return kl_loss + property_loss + graph_loss + adjacency_loss + features_loss
def _gradient_penalty(self, graph_real, graph_generated):
# Unpack graphs
adjacency_real, features_real = graph_real
adjacency_generated, features_generated = graph_generated
# Generate interpolated graphs (adjacency_interp and features_interp)
alpha = keras.random.uniform(shape=(self.batch_size,), seed=self.seed_generator)
alpha = ops.reshape(alpha, (self.batch_size, 1, 1, 1))
adjacency_interp = (adjacency_real * alpha) + (
1.0 - alpha
) * adjacency_generated
alpha = ops.reshape(alpha, (self.batch_size, 1, 1))
features_interp = (features_real * alpha) + (1.0 - alpha) * features_generated
# Compute the logits of interpolated graphs
with tf.GradientTape() as tape:
tape.watch(adjacency_interp)
tape.watch(features_interp)
_, _, logits, _, _ = self(
[adjacency_interp, features_interp], training=True
)
# Compute the gradients with respect to the interpolated graphs
grads = tape.gradient(logits, [adjacency_interp, features_interp])
# Compute the gradient penalty
grads_adjacency_penalty = (1 - ops.norm(grads[0], axis=1)) ** 2
grads_features_penalty = (1 - ops.norm(grads[1], axis=2)) ** 2
return ops.mean(
ops.mean(grads_adjacency_penalty, axis=(-2, -1))
+ ops.mean(grads_features_penalty, axis=(-1))
)
def inference(self, batch_size):
z = keras.random.normal(
shape=(batch_size, LATENT_DIM), seed=self.seed_generator
)
reconstruction_adjacency, reconstruction_features = model.decoder.predict(z)
# obtain one-hot encoded adjacency tensor
adjacency = ops.argmax(reconstruction_adjacency, axis=1)
adjacency = ops.one_hot(adjacency, num_classes=BOND_DIM, axis=1)
# Remove potential self-loops from adjacency
adjacency = adjacency * (1.0 - ops.eye(NUM_ATOMS, dtype="float32")[None, None])
# obtain one-hot encoded feature tensor
features = ops.argmax(reconstruction_features, axis=2)
features = ops.one_hot(features, num_classes=ATOM_DIM, axis=2)
return [
graph_to_molecule([adjacency[i].numpy(), features[i].numpy()])
for i in range(batch_size)
]
def call(self, inputs):
z_mean, log_var = self.encoder(inputs)
z = self.sampling_layer([z_mean, log_var])
gen_adjacency, gen_features = self.decoder(z)
property_pred = self.property_prediction_layer(z_mean)
return z_mean, log_var, property_pred, gen_adjacency, gen_features
"""
## Train the model
"""
vae_optimizer = keras.optimizers.Adam(learning_rate=VAE_LR)
encoder = get_encoder(
gconv_units=[9],
adjacency_shape=(BOND_DIM, NUM_ATOMS, NUM_ATOMS),
feature_shape=(NUM_ATOMS, ATOM_DIM),
latent_dim=LATENT_DIM,
dense_units=[512],
dropout_rate=0.0,
)
decoder = get_decoder(
dense_units=[128, 256, 512],
dropout_rate=0.2,
latent_dim=LATENT_DIM,
adjacency_shape=(BOND_DIM, NUM_ATOMS, NUM_ATOMS),
feature_shape=(NUM_ATOMS, ATOM_DIM),
)
model = MoleculeGenerator(encoder, decoder, MAX_MOLSIZE)
model.compile(vae_optimizer)
history = model.fit([adjacency_tensor, feature_tensor, qed_tensor], epochs=EPOCHS)
"""
## Inference
We use our model to generate new valid molecules from different points of the latent space.
"""
"""
### Generate unique Molecules with the model
"""
molecules = model.inference(1000)
MolsToGridImage(
[m for m in molecules if m is not None][:1000], molsPerRow=5, subImgSize=(260, 160)
)
"""
### Display latent space clusters with respect to molecular properties (QAE)
"""
def plot_latent(vae, data, labels):
# display a 2D plot of the property in the latent space
z_mean, _ = vae.encoder.predict(data)
plt.figure(figsize=(12, 10))
plt.scatter(z_mean[:, 0], z_mean[:, 1], c=labels)
plt.colorbar()
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.show()
plot_latent(model, [adjacency_tensor[:8000], feature_tensor[:8000]], qed_tensor[:8000])
"""
## Conclusion
In this example, we combined model architectures from two papers,
"Automatic chemical design using a data-driven continuous representation of
molecules" from 2016 and the "MolGAN" paper from 2018. The former paper
treats SMILES inputs as strings and seeks to generate molecule strings in SMILES format,
while the later paper considers SMILES inputs as graphs (a combination of adjacency
matrices and feature matrices) and seeks to generate molecules as graphs.
This hybrid approach enables a new type of directed gradient-based search through chemical space.
Example available on HuggingFace
| Trained Model | Demo |
| :--: | :--: |
| [![Generic badge](https://img.shields.io/badge/%F0%9F%A4%97%20Model-molecule%20generation%20with%20VAE-black.svg)](https://huggingface.co/keras-io/drug-molecule-generation-with-VAE) | [![Generic badge](https://img.shields.io/badge/%F0%9F%A4%97%20Spaces-molecule%20generation%20with%20VAE-black.svg)](https://huggingface.co/spaces/keras-io/generating-drug-molecule-with-VAE) |
"""