Spaces:
Sleeping
Sleeping
| import torch | |
| import subprocess | |
| import lightning.pytorch as pl | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| def class_fn_from_str(class_str): | |
| class_module, from_class = class_str.rsplit(".", 1) | |
| class_module = __import__(class_module, fromlist=[from_class]) | |
| return getattr(class_module, from_class) | |
| class BaseVAE(torch.nn.Module): | |
| def __init__(self, scale=1.0, shift=0.0): | |
| super().__init__() | |
| self.model = torch.nn.Identity() | |
| self.scale = scale | |
| self.shift = shift | |
| def encode(self, x): | |
| return x/self.scale+self.shift | |
| def decode(self, x): | |
| return (x-self.shift)*self.scale | |
| # very bad bugs with nearest sampling | |
| class DownSampleVAE(BaseVAE): | |
| def __init__(self, down_ratio, scale=1.0, shift=0.0): | |
| super().__init__() | |
| self.model = torch.nn.Identity() | |
| self.scale = scale | |
| self.shift = shift | |
| self.down_ratio = down_ratio | |
| def encode(self, x): | |
| x = torch.nn.functional.interpolate(x, scale_factor=1/self.down_ratio, mode='bicubic', align_corners=False) | |
| return x/self.scale+self.shift | |
| def decode(self, x): | |
| x = (x-self.shift)*self.scale | |
| x = torch.nn.functional.interpolate(x, scale_factor=self.down_ratio, mode='bicubic', align_corners=False) | |
| return x | |
| class LatentVAE(BaseVAE): | |
| def __init__(self, precompute=False, weight_path:str=None): | |
| super().__init__() | |
| self.precompute = precompute | |
| self.model = None | |
| self.weight_path = weight_path | |
| from diffusers.models import AutoencoderKL | |
| setattr(self, "model", AutoencoderKL.from_pretrained(self.weight_path)) | |
| self.scaling_factor = self.model.config.scaling_factor | |
| def encode(self, x): | |
| assert self.model is not None | |
| if self.precompute: | |
| return x.mul_(self.scaling_factor) | |
| return self.model.encode(x).latent_dist.sample().mul_(self.scaling_factor) | |
| def decode(self, x): | |
| assert self.model is not None | |
| return self.model.decode(x.div_(self.scaling_factor)).sample | |
| def uint82fp(x): | |
| x = x.to(torch.float32) | |
| x = (x - 127.5) / 127.5 | |
| return x | |
| def fp2uint8(x): | |
| x = torch.clip_((x + 1) * 127.5 + 0.5, 0, 255).to(torch.uint8) | |
| return x | |