DDT / src /diffusion /ddpm /vp_sampling.py
wangshuai6
init space
9e426da
import torch
from src.diffusion.base.scheduling import *
from src.diffusion.base.sampling import *
from typing import Callable
def ode_step_fn(x, eps, beta, sigma, dt):
return x + (-0.5*beta*x + 0.5*eps*beta/sigma)*dt
def sde_step_fn(x, eps, beta, sigma, dt):
return x + (-0.5*beta*x + eps*beta/sigma)*dt + torch.sqrt(dt.abs()*beta)*torch.randn_like(x)
import logging
logger = logging.getLogger(__name__)
class VPEulerSampler(BaseSampler):
def __init__(
self,
train_max_t=1000,
guidance_fn: Callable = None,
step_fn: Callable = ode_step_fn,
last_step=None,
last_step_fn: Callable = ode_step_fn,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.guidance_fn = guidance_fn
self.step_fn = step_fn
self.last_step = last_step
self.last_step_fn = last_step_fn
self.train_max_t = train_max_t
if self.last_step is None or self.num_steps == 1:
self.last_step = 1.0 / self.num_steps
assert self.last_step > 0.0
assert self.scheduler is not None
def _impl_sampling(self, net, noise, condition, uncondition):
batch_size = noise.shape[0]
steps = torch.linspace(1.0, self.last_step, self.num_steps, device=noise.device)
steps = torch.cat([steps, torch.tensor([0.0], device=noise.device)], dim=0)
cfg_condition = torch.cat([uncondition, condition], dim=0)
x = noise
for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])):
dt = t_next - t_cur
t_cur = t_cur.repeat(batch_size)
sigma = self.scheduler.sigma(t_cur)
beta = self.scheduler.beta(t_cur)
cfg_x = torch.cat([x, x], dim=0)
cfg_t = t_cur.repeat(2)
out = net(cfg_x, cfg_t*self.train_max_t, cfg_condition)
eps = self.guidance_fn(out, self.guidance)
if i < self.num_steps -1 :
x0 = self.last_step_fn(x, eps, beta, sigma, -t_cur[0])
x = self.step_fn(x, eps, beta, sigma, dt)
else:
x = x0 = self.last_step_fn(x, eps, beta, sigma, -self.last_step)
return x