Spaces:
Running
on
Zero
Running
on
Zero
import time | |
import torch | |
import torch.nn as nn | |
class BaseTrainer(nn.Module): | |
def __init__(self, | |
null_condition_p=0.1, | |
log_var=False, | |
): | |
super(BaseTrainer, self).__init__() | |
self.null_condition_p = null_condition_p | |
self.log_var = log_var | |
def preproprocess(self, raw_iamges, x, condition, uncondition): | |
bsz = x.shape[0] | |
if self.null_condition_p > 0: | |
mask = torch.rand((bsz), device=condition.device) < self.null_condition_p | |
mask = mask.expand_as(condition) | |
condition[mask] = uncondition[mask] | |
return raw_iamges, x, condition | |
def _impl_trainstep(self, net, ema_net, raw_images, x, y): | |
raise NotImplementedError | |
def __call__(self, net, ema_net, raw_images, x, condition, uncondition): | |
raw_images, x, condition = self.preproprocess(raw_images, x, condition, uncondition) | |
return self._impl_trainstep(net, ema_net, raw_images, x, condition) | |