artst-tts-demo / artst /criterions /artst_criterion.py
herwoww's picture
first upload
1547a56
raw
history blame
21.9 kB
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transform (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------
import re
from dataclasses import dataclass
import math
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from artst.criterions.text_to_speech_loss import TexttoSpeechLoss
from artst.criterions.text_pretrain_criterion import TextPretrainCriterion, TextPretrainCriterionConfig
from fairseq.criterions.label_smoothed_cross_entropy import LabelSmoothedCrossEntropyCriterionConfig
from artst.criterions.speech_pretrain_criterion import SpeechPretrainCriterion, SpeechPretrainCriterionConfig
from artst.criterions.speech_to_text_loss import SpeechtoTextLoss, SpeechtoTextLossConfig
from fairseq.logging.meters import safe_round
@dataclass
class ArTSTCriterionConfig(
LabelSmoothedCrossEntropyCriterionConfig,
TextPretrainCriterionConfig,
SpeechPretrainCriterionConfig,
SpeechtoTextLossConfig
):
pass
@register_criterion(
"artst", dataclass=ArTSTCriterionConfig
)
class ArTSTCriterion(FairseqCriterion):
def __init__(
self,
task,
sentence_avg,
label_smoothing,
pred_masked_weight,
pred_nomask_weight,
loss_weights=None,
log_keys=None,
ignore_prefix_size=0,
report_accuracy=False,
use_masking=True,
use_weighted_masking=False,
loss_type="L1",
bce_pos_weight=5.0,
bce_loss_lambda=1.0,
use_guided_attn_loss=False,
num_heads_applied_guided_attn=2,
ce_weight=1.0,
ctc_weight=0.0,
hubert_weight=1.0,
dec_weight=1.0,
bart_weight=1.0,
):
super().__init__(task)
self.speech_criterion = TexttoSpeechLoss(
task,
sentence_avg,
use_masking,
use_weighted_masking,
loss_type,
bce_pos_weight,
bce_loss_lambda,
use_guided_attn_loss,
num_heads_applied_guided_attn=num_heads_applied_guided_attn,
)
self.text_criterion = SpeechtoTextLoss(
SpeechtoTextLossConfig,
task,
sentence_avg,
label_smoothing,
ignore_prefix_size,
report_accuracy,
ce_weight,
ctc_weight
)
self.text_pretrain_criterion = TextPretrainCriterion(
task,
sentence_avg,
bart_weight,
loss_weights,
)
self.speech_pretrain_criterion = SpeechPretrainCriterion(
task,
sentence_avg,
pred_masked_weight,
pred_nomask_weight,
loss_weights,
log_keys,
use_masking,
use_weighted_masking,
loss_type,
bce_pos_weight,
hubert_weight,
dec_weight
)
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
task_name = sample['task_name']
if task_name == 's2t' or task_name == 's2c':
return self.text_criterion(model, sample, reduce)
elif task_name == 't2s' or task_name == 's2s':
return self.speech_criterion(model, sample)
elif task_name == 'text_pretrain':
return self.text_pretrain_criterion(model, sample, reduce)
elif task_name == 'speech_pretrain':
return self.speech_pretrain_criterion(model, sample, reduce)
@classmethod
def reduce_metrics(cls, logging_outputs):
"""Aggregate logging outputs from data parallel training."""
logging_outputs_dict = {}
for logging_output in logging_outputs:
for task_name in logging_output:
if task_name not in ['s2t', 't2s', 's2c', 's2s', 'text_pretrain', 'speech_pretrain']:
continue
if task_name not in logging_outputs_dict:
logging_outputs_dict[task_name] = []
logging_outputs_dict[task_name].append(logging_output[task_name])
for task_name in logging_outputs_dict:
if task_name == 's2t':
# LabelSmoothedCrossEntropyCriterion.reduce_metrics([logging_output['s2t'] for logging_output in logging_outputs])
s2t_logging_output = logging_outputs_dict[task_name]
# s2t_sum = sum(log.get("ce_loss", 0) for log in logging_outputs)
loss_sum = sum(log.get("loss", 0) for log in s2t_logging_output)
nll_loss_sum = sum(log.get("nll_loss", 0) for log in s2t_logging_output)
ntokens = sum(log.get("ntokens", 0) for log in s2t_logging_output)
ce_loss_sum = sum(log.get("ce_loss", 0) for log in s2t_logging_output)
ctc_loss_sum = sum(log.get("ctc_loss", 0) for log in s2t_logging_output)
sample_size = max(1, sum(log.get("sample_size", 0) for log in s2t_logging_output))
metrics.log_scalar(
"s2t_loss", loss_sum / sample_size / math.log(2), sample_size, 1, round=3
)
metrics.log_scalar(
"s2t_nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, 2, round=3
)
metrics.log_derived(
"s2t_ppl", lambda meters: utils.get_perplexity(meters["s2t_nll_loss"].avg, 2)
)
metrics.log_scalar(
"ctc_loss", ctc_loss_sum / sample_size / math.log(2), ntokens, 2, round=3
)
metrics.log_scalar(
"ce_loss", ce_loss_sum / ntokens, ntokens, 2, round=3
)
total = utils.item(sum(log.get("total", 0) for log in s2t_logging_output))
if total > 0:
metrics.log_scalar("s2t_total", total)
n_correct = utils.item(
sum(log.get("n_correct", 0) for log in s2t_logging_output)
)
metrics.log_scalar("s2t_n_correct", n_correct)
metrics.log_derived(
"s2t_accuracy",
lambda meters: round(
meters["s2t_n_correct"].sum * 100.0 / meters["s2t_total"].sum, 3
)
if meters["s2t_total"].sum > 0
else float("nan"),
2
)
c_errors = sum(log.get("c_errors", 0) for log in s2t_logging_output)
metrics.log_scalar("_c_errors", c_errors)
c_total = sum(log.get("c_total", 0) for log in s2t_logging_output)
metrics.log_scalar("_c_total", c_total)
w_errors = sum(log.get("w_errors", 0) for log in s2t_logging_output)
metrics.log_scalar("_w_errors", w_errors)
wv_errors = sum(log.get("wv_errors", 0) for log in s2t_logging_output)
metrics.log_scalar("_wv_errors", wv_errors)
w_total = sum(log.get("w_total", 0) for log in s2t_logging_output)
metrics.log_scalar("_w_total", w_total)
if c_total > 0:
metrics.log_derived(
"uer",
lambda meters: safe_round(
meters["_c_errors"].sum * 100.0 / meters["_c_total"].sum, 3
)
if meters["_c_total"].sum > 0
else float("nan"),
)
if w_total > 0:
metrics.log_derived(
"wer",
lambda meters: safe_round(
meters["_w_errors"].sum * 100.0 / meters["_w_total"].sum, 3
)
if meters["_w_total"].sum > 0
else float("nan"),
)
metrics.log_derived(
"raw_wer",
lambda meters: safe_round(
meters["_wv_errors"].sum * 100.0 / meters["_w_total"].sum, 3
)
if meters["_w_total"].sum > 0
else float("nan"),
)
if task_name == 't2s':
# TTSLossCriterion.reduce_metrics([logging_output['t2s'] for logging_output in logging_outputs])
# t2s_sum = sum(log.get("speech_loss", 0) for log in logging_outputs)
t2s_logging_output = logging_outputs_dict[task_name]
loss_sum = sum(log.get("loss", 0) for log in t2s_logging_output)
l1_loss_sum = sum(log.get("l1_loss", 0) for log in t2s_logging_output)
l2_loss_sum = sum(log.get("l2_loss", 0) for log in t2s_logging_output)
bce_loss_sum = sum(log.get("bce_loss", 0) for log in t2s_logging_output)
sample_size = max(1, sum(log.get("sample_size", 0) for log in t2s_logging_output))
metrics.log_scalar(
"t2s_loss", loss_sum / sample_size, sample_size, 1, round=5
)
encoder_alpha_sum = sum(log.get("encoder_alpha", 0) for log in t2s_logging_output)
decoder_alpha_sum = sum(log.get("decoder_alpha", 0) for log in t2s_logging_output)
ngpu = sum(log.get("ngpu", 0) for log in t2s_logging_output)
metrics.log_scalar(
"t2s_l1_loss", l1_loss_sum / sample_size, sample_size, 2, round=5
)
metrics.log_scalar(
"t2s_l2_loss", l2_loss_sum / sample_size, sample_size, 2, round=5
)
metrics.log_scalar(
"t2s_bce_loss", bce_loss_sum / sample_size, sample_size, 2, round=5
)
metrics.log_scalar(
"t2s_encoder_alpha", encoder_alpha_sum / sample_size, sample_size, round=5
)
metrics.log_scalar(
"t2s_decoder_alpha", decoder_alpha_sum / sample_size, sample_size, round=5
)
if "enc_dec_attn_loss" in t2s_logging_output[0]:
enc_dec_attn_loss_sum = sum(log.get("enc_dec_attn_loss", 0) for log in t2s_logging_output)
metrics.log_scalar(
"t2s_enc_dec_attn_loss", enc_dec_attn_loss_sum / sample_size, sample_size, round=8
)
if task_name == 's2c':
s2c_logging_output = logging_outputs_dict[task_name]
loss_sum = sum(log.get("loss", 0) for log in s2c_logging_output)
nll_loss_sum = sum(log.get("nll_loss", 0) for log in s2c_logging_output)
ntokens = sum(log.get("ntokens", 0) for log in s2c_logging_output)
sample_size = max(1, sum(log.get("sample_size", 0) for log in s2c_logging_output))
metrics.log_scalar(
"s2c_loss", loss_sum / sample_size / math.log(2), sample_size, 1, round=3
)
metrics.log_scalar(
"s2c_nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, 2, round=3
)
total = utils.item(sum(log.get("total", 0) for log in s2c_logging_output))
if total > 0:
metrics.log_scalar("s2c_total", total)
n_correct = utils.item(sum(log.get("n_correct", 0) for log in s2c_logging_output))
metrics.log_scalar("s2c_n_correct", n_correct)
metrics.log_derived(
"s2c_accuracy",
lambda meters: round(
meters["s2c_n_correct"].sum * 100.0 / meters["s2c_total"].sum, 3
)
if meters["s2c_total"].sum > 0
else float("nan"),
2
)
if task_name == 's2s':
s2s_logging_output = logging_outputs_dict[task_name]
loss_sum = sum(log.get("loss", 0) for log in s2s_logging_output)
l1_loss_sum = sum(log.get("l1_loss", 0) for log in s2s_logging_output)
l2_loss_sum = sum(log.get("l2_loss", 0) for log in s2s_logging_output)
bce_loss_sum = sum(log.get("bce_loss", 0) for log in s2s_logging_output)
sample_size = max(1, sum(log.get("sample_size", 0) for log in s2s_logging_output))
metrics.log_scalar(
"s2s_loss", loss_sum / sample_size, sample_size, 1, round=5
)
encoder_alpha_sum = sum(log.get("encoder_alpha", 0) for log in s2s_logging_output)
decoder_alpha_sum = sum(log.get("decoder_alpha", 0) for log in s2s_logging_output)
ngpu = sum(log.get("ngpu", 0) for log in s2s_logging_output)
metrics.log_scalar(
"s2s_l1_loss", l1_loss_sum / sample_size, sample_size, 2, round=5
)
metrics.log_scalar(
"s2s_l2_loss", l2_loss_sum / sample_size, sample_size, 2, round=5
)
metrics.log_scalar(
"s2s_bce_loss", bce_loss_sum / sample_size, sample_size, 2, round=5
)
metrics.log_scalar(
"s2s_decoder_alpha", decoder_alpha_sum / sample_size, sample_size, round=5
)
if "enc_dec_attn_loss" in s2s_logging_output[0]:
enc_dec_attn_loss_sum = sum(log.get("enc_dec_attn_loss", 0) for log in s2s_logging_output)
metrics.log_scalar(
"s2s_enc_dec_attn_loss", enc_dec_attn_loss_sum / sample_size, sample_size, round=8
)
if task_name == 'text_pretrain':
bart_logging_output = logging_outputs_dict[task_name]
loss_sum = sum(log.get("loss", 0) for log in bart_logging_output)
ntokens = sum(log.get("ntokens", 0) for log in bart_logging_output)
sample_size = max(1, sum(log.get("sample_size", 0) for log in bart_logging_output))
bart_loss_sum = sum(log.get("bart_loss", 0) for log in bart_logging_output)
# we divide by log(2) to convert the loss from base e to base 2
metrics.log_scalar(
"text_loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"bart_loss", bart_loss_sum / sample_size / math.log(2), ntokens, 2, round=3
)
if sample_size != ntokens:
metrics.log_scalar(
"bart_nll_loss", bart_loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"bart_ppl", lambda meters: utils.get_perplexity(meters["bart_nll_loss"].avg)
)
else:
metrics.log_derived(
"bart_ppl", lambda meters: utils.get_perplexity(meters["bart_loss"].avg)
)
metrics.log_scalar("bart_wpb", ntokens, priority=180, round=1)
val_prob_perplexity = 0
val_code_perplexity = 0
sample_size_pp = 0
count_log_cp = 0
for log in bart_logging_output:
if "loss_prob_perplexity" in log:
val_prob_perplexity = val_prob_perplexity + log["loss_prob_perplexity"]
sample_size_pp = sample_size_pp + log["sample_size"]
if "code_perplexity" in log:
val_code_perplexity = val_code_perplexity + log["code_perplexity"]
count_log_cp = count_log_cp + 1
if val_prob_perplexity > 0:
metrics.log_scalar("text_loss_prob_perplexity", val_prob_perplexity / sample_size_pp / math.log(2), round=3)
if val_code_perplexity > 0:
metrics.log_scalar("text_code_perplexity", val_code_perplexity / count_log_cp, round=3)
if task_name == 'speech_pretrain':
hubert_logging_output = logging_outputs_dict[task_name]
loss_sum = sum(log.get("loss", 0) for log in hubert_logging_output)
ntokens = sum(log.get("ntokens", 0) for log in hubert_logging_output)
sample_size = max(1, sum(log.get("sample_size", 0) for log in hubert_logging_output))
dec_loss_sum = sum(log.get("dec_loss", 0) for log in hubert_logging_output)
l1_loss_sum = sum(log.get("l1_loss", 0) for log in hubert_logging_output)
l2_loss_sum = sum(log.get("l2_loss", 0) for log in hubert_logging_output)
bce_loss_sum = sum(log.get("bce_loss", 0) for log in hubert_logging_output)
ngpu = sum(log.get("ngpu", 0) for log in hubert_logging_output)
metrics.log_scalar("hubert_loss", loss_sum / sample_size / math.log(2), sample_size, round=3)
if sample_size != ntokens:
metrics.log_scalar("hubert_nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3)
metrics.log_derived("hubert_ppl", lambda meters: utils.get_perplexity(meters["hubert_nll_loss"].avg))
else:
metrics.log_derived("hubert_ppl", lambda meters: utils.get_perplexity(meters["hubert_loss"].avg))
counts = {}
for lk in hubert_logging_output[0].keys():
if lk.startswith("count_"):
val = sum(log[lk] for log in hubert_logging_output)
metrics.log_scalar("hubert_" + lk, val)
counts[lk] = val
for lk in hubert_logging_output[0].keys():
if lk.startswith("loss_") and lk != 'loss_prob_perplexity':
val = sum(log[lk] for log in hubert_logging_output)
metrics.log_scalar("hubert_" + lk, val / sample_size / math.log(2), round=3)
elif lk.startswith("correct_"):
val = sum(log[lk] for log in hubert_logging_output)
metrics.log_scalar("hubert_" + lk, val / counts[re.sub("correct", "count", lk)])
# elif lk == 'code_perplexity':
# val = sum(log[lk] for log in hubert_logging_output)
# metrics.log_scalar("hubert_" + lk, val / len(hubert_logging_output), round=3)
val_prob_perplexity = 0
val_code_perplexity = 0
sample_size_pp = 0
count_log_cp = 0
for log in hubert_logging_output:
if "loss_prob_perplexity" in log:
val_prob_perplexity = val_prob_perplexity + log["loss_prob_perplexity"]
sample_size_pp = sample_size_pp + log["sample_size"]
if "code_perplexity" in log:
val_code_perplexity = val_code_perplexity + log["code_perplexity"]
count_log_cp = count_log_cp + 1
if val_prob_perplexity > 0:
metrics.log_scalar("hubert_loss_prob_perplexity", val_prob_perplexity / sample_size_pp / math.log(2), round=3)
if val_code_perplexity > 0:
metrics.log_scalar("hubert_code_perplexity", val_code_perplexity / count_log_cp, round=3)
metrics.log_scalar(
"hubert_dec_loss", dec_loss_sum / ngpu, sample_size, 2, round=5
)
metrics.log_scalar(
"hubert_l1_loss", l1_loss_sum / ngpu, sample_size, 2, round=5
)
metrics.log_scalar(
"hubert_l2_loss", l2_loss_sum / ngpu, sample_size, 2, round=5
)
metrics.log_scalar(
"hubert_bce_loss", bce_loss_sum / ngpu, sample_size, 2, round=5
)
if "enc_dec_attn_loss" in hubert_logging_output[0]:
enc_dec_attn_loss_sum = sum(log.get("enc_dec_attn_loss", 0) for log in hubert_logging_output)
metrics.log_scalar(
"hubert_enc_dec_attn_loss", enc_dec_attn_loss_sum / ngpu, sample_size, round=8
)
metrics.log_scalar("hubert_wpb", ntokens, priority=180, round=1)
loss = sum(log.get("loss", 0) for log in logging_outputs)
sample_size = max(1, sum(log.get("sample_size", 0) for log in logging_outputs))
metrics.log_scalar(
"loss", loss / sample_size, sample_size, 1, round=5
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return False