artst-tts-demo / artst /criterions /text_pretrain_criterion.py
herwoww's picture
first upload
1547a56
raw
history blame
6.01 kB
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transform (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------
import math
from dataclasses import dataclass, field
from typing import List, Optional
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from omegaconf import II
@dataclass
class TextPretrainCriterionConfig(FairseqDataclass):
sentence_avg: bool = II("optimization.sentence_avg")
loss_weights: Optional[List[float]] = field(
default_factory=lambda: [0.1,],
metadata={"help": "weights for additional loss terms (not first one)"},
)
bart_weight: float = field(
default=1.0,
metadata={"help": "loss weight for cross entropy"},
)
class TextPretrainCriterion(FairseqCriterion):
def __init__(self, task, sentence_avg, bart_weight, loss_weights=None):
super().__init__(task)
self.sentence_avg = sentence_avg
self.loss_weights = loss_weights
self.bart_weight = bart_weight
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output, codebook_out, encoder_output = model(**sample["net_input"])
bart_loss, _ = self.compute_loss(model, net_output, sample, reduce=reduce)
sample_size = (
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
)
loss = self.bart_weight * bart_loss
logging_output = {
"loss": loss.item(),
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"bart_loss": bart_loss.item(),
"sample_size": sample_size,
}
if "prob_perplexity" in codebook_out:
assert hasattr(model, "get_extra_losses")
extra_losses, names = model.get_extra_losses(codebook_out)
if torch.is_tensor(extra_losses):
extra_losses = [extra_losses]
names = [names]
if len(self.loss_weights) == 1 and len(extra_losses) != 1:
self.loss_weights = [self.loss_weights[0]] * len(extra_losses)
if len(self.loss_weights) > len(extra_losses):
modified_loss_weight = self.loss_weights[len(extra_losses):]
else:
modified_loss_weight = self.loss_weights
# assert len(extra_losses) == len(self.loss_weights), f"{len(extra_losses)}, {len(self.loss_weights)}"
for p, n, coef in zip(extra_losses, names, modified_loss_weight):
# print(n + str(coef))
if coef != 0 and p is not None:
p = coef * p.float() * sample_size
loss += p
logging_output[f"loss_{n}"] = p.item()
if 'loss_prob_perplexity' in logging_output:
logging_output['code_perplexity'] = codebook_out['code_perplexity'].item()
return loss, sample_size, logging_output
def compute_loss(self, model, net_output, sample, reduce=True):
lprobs = model.get_normalized_probs(net_output, log_probs=True)
lprobs = lprobs.view(-1, lprobs.size(-1))
target = model.get_targets(sample, net_output).view(-1)
loss = F.nll_loss(
lprobs,
target,
ignore_index=self.padding_idx,
reduction="sum" if reduce else "none",
)
return loss, loss
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
bart_loss_sum = sum(log.get("bart_loss", 0) for log in logging_outputs)
# we divide by log(2) to convert the loss from base e to base 2
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"bart_loss", bart_loss_sum / sample_size / math.log(2), ntokens, 2, round=3
)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", bart_loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
else:
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["bart_loss"].avg)
)
if "loss_prob_perplexity" in logging_outputs[0].keys():
val = sum(log["loss_prob_perplexity"] for log in logging_outputs)
metrics.log_scalar("loss_prob_perplexity", val / sample_size / math.log(2), round=3)
if "code_perplexity" in logging_outputs[0].keys():
val = sum(log["code_perplexity"] for log in logging_outputs)
metrics.log_scalar("code_perplexity", val / len(logging_outputs), round=3)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True