Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# ArTST: Arabic Text and Speech Transform (https://arxiv.org/abs/2310.16621) | |
# Github source: https://github.com/mbzuai-nlp/ArTST | |
# Based on speecht5, fairseq and espnet code bases | |
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet | |
# -------------------------------------------------------- | |
import math | |
from dataclasses import dataclass, field | |
from typing import List, Optional | |
import torch | |
import torch.nn.functional as F | |
from fairseq import metrics, utils | |
from fairseq.criterions import FairseqCriterion, register_criterion | |
from fairseq.dataclass import FairseqDataclass | |
from omegaconf import II | |
class TextPretrainCriterionConfig(FairseqDataclass): | |
sentence_avg: bool = II("optimization.sentence_avg") | |
loss_weights: Optional[List[float]] = field( | |
default_factory=lambda: [0.1,], | |
metadata={"help": "weights for additional loss terms (not first one)"}, | |
) | |
bart_weight: float = field( | |
default=1.0, | |
metadata={"help": "loss weight for cross entropy"}, | |
) | |
class TextPretrainCriterion(FairseqCriterion): | |
def __init__(self, task, sentence_avg, bart_weight, loss_weights=None): | |
super().__init__(task) | |
self.sentence_avg = sentence_avg | |
self.loss_weights = loss_weights | |
self.bart_weight = bart_weight | |
def forward(self, model, sample, reduce=True): | |
"""Compute the loss for the given sample. | |
Returns a tuple with three elements: | |
1) the loss | |
2) the sample size, which is used as the denominator for the gradient | |
3) logging outputs to display while training | |
""" | |
net_output, codebook_out, encoder_output = model(**sample["net_input"]) | |
bart_loss, _ = self.compute_loss(model, net_output, sample, reduce=reduce) | |
sample_size = ( | |
sample["target"].size(0) if self.sentence_avg else sample["ntokens"] | |
) | |
loss = self.bart_weight * bart_loss | |
logging_output = { | |
"loss": loss.item(), | |
"ntokens": sample["ntokens"], | |
"nsentences": sample["target"].size(0), | |
"bart_loss": bart_loss.item(), | |
"sample_size": sample_size, | |
} | |
if "prob_perplexity" in codebook_out: | |
assert hasattr(model, "get_extra_losses") | |
extra_losses, names = model.get_extra_losses(codebook_out) | |
if torch.is_tensor(extra_losses): | |
extra_losses = [extra_losses] | |
names = [names] | |
if len(self.loss_weights) == 1 and len(extra_losses) != 1: | |
self.loss_weights = [self.loss_weights[0]] * len(extra_losses) | |
if len(self.loss_weights) > len(extra_losses): | |
modified_loss_weight = self.loss_weights[len(extra_losses):] | |
else: | |
modified_loss_weight = self.loss_weights | |
# assert len(extra_losses) == len(self.loss_weights), f"{len(extra_losses)}, {len(self.loss_weights)}" | |
for p, n, coef in zip(extra_losses, names, modified_loss_weight): | |
# print(n + str(coef)) | |
if coef != 0 and p is not None: | |
p = coef * p.float() * sample_size | |
loss += p | |
logging_output[f"loss_{n}"] = p.item() | |
if 'loss_prob_perplexity' in logging_output: | |
logging_output['code_perplexity'] = codebook_out['code_perplexity'].item() | |
return loss, sample_size, logging_output | |
def compute_loss(self, model, net_output, sample, reduce=True): | |
lprobs = model.get_normalized_probs(net_output, log_probs=True) | |
lprobs = lprobs.view(-1, lprobs.size(-1)) | |
target = model.get_targets(sample, net_output).view(-1) | |
loss = F.nll_loss( | |
lprobs, | |
target, | |
ignore_index=self.padding_idx, | |
reduction="sum" if reduce else "none", | |
) | |
return loss, loss | |
def reduce_metrics(logging_outputs) -> None: | |
"""Aggregate logging outputs from data parallel training.""" | |
loss_sum = sum(log.get("loss", 0) for log in logging_outputs) | |
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) | |
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) | |
bart_loss_sum = sum(log.get("bart_loss", 0) for log in logging_outputs) | |
# we divide by log(2) to convert the loss from base e to base 2 | |
metrics.log_scalar( | |
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3 | |
) | |
metrics.log_scalar( | |
"bart_loss", bart_loss_sum / sample_size / math.log(2), ntokens, 2, round=3 | |
) | |
if sample_size != ntokens: | |
metrics.log_scalar( | |
"nll_loss", bart_loss_sum / ntokens / math.log(2), ntokens, round=3 | |
) | |
metrics.log_derived( | |
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) | |
) | |
else: | |
metrics.log_derived( | |
"ppl", lambda meters: utils.get_perplexity(meters["bart_loss"].avg) | |
) | |
if "loss_prob_perplexity" in logging_outputs[0].keys(): | |
val = sum(log["loss_prob_perplexity"] for log in logging_outputs) | |
metrics.log_scalar("loss_prob_perplexity", val / sample_size / math.log(2), round=3) | |
if "code_perplexity" in logging_outputs[0].keys(): | |
val = sum(log["code_perplexity"] for log in logging_outputs) | |
metrics.log_scalar("code_perplexity", val / len(logging_outputs), round=3) | |
def logging_outputs_can_be_summed() -> bool: | |
""" | |
Whether the logging outputs returned by `forward` can be summed | |
across workers prior to calling `reduce_metrics`. Setting this | |
to True will improves distributed training speed. | |
""" | |
return True | |