Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# ArTST: Arabic Text and Speech Transform (https://arxiv.org/abs/2310.16621) | |
# Github source: https://github.com/mbzuai-nlp/ArTST | |
# Based on speecht5, fairseq and espnet code bases | |
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet | |
# -------------------------------------------------------- | |
import math | |
from argparse import Namespace | |
from dataclasses import dataclass, field | |
from omegaconf import II | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from fairseq import metrics, utils | |
from fairseq.criterions import FairseqCriterion, register_criterion | |
from fairseq.dataclass import FairseqDataclass | |
from fairseq.data.data_utils import post_process | |
from fairseq.tasks import FairseqTask | |
from fairseq.logging.meters import safe_round | |
import logging | |
logger = logging.getLogger(__name__) | |
class SpeechtoTextLossConfig(FairseqDataclass): | |
zero_infinity: bool = field( | |
default=False, | |
metadata={"help": "zero inf loss when source length <= target length"}, | |
) | |
sentence_avg: bool = II("optimization.sentence_avg") | |
post_process: Optional[str] = field( | |
default="sentencepiece", | |
metadata={ | |
"help": "how to post process predictions into words. can be letter, " | |
"wordpiece, BPE symbols, etc. " | |
"See fairseq.data.data_utils.post_process() for full list of options" | |
}, | |
) | |
wer_kenlm_model: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "if this is provided, use kenlm to compute wer (along with other wer_* args)" | |
}, | |
) | |
wer_lexicon: Optional[str] = field( | |
default=None, | |
metadata={"help": "lexicon to use with wer_kenlm_model"}, | |
) | |
wer_lm_weight: float = field( | |
default=2.0, | |
metadata={"help": "lm weight to use with wer_kenlm_model"}, | |
) | |
wer_word_score: float = field( | |
default=-1.0, | |
metadata={"help": "lm word score to use with wer_kenlm_model"}, | |
) | |
wer_args: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "DEPRECATED: tuple of (wer_kenlm_model, wer_lexicon, wer_lm_weight, wer_word_score)" | |
}, | |
) | |
label_smoothing: float = field( | |
default=0.0, | |
metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"}, | |
) | |
report_accuracy: bool = field( | |
default=False, | |
metadata={"help": "report accuracy metric"}, | |
) | |
ignore_prefix_size: int = field( | |
default=0, | |
metadata={"help": "Ignore first N tokens"}, | |
) | |
#: bool = II("optimization.sentence_avg") | |
ce_weight: float = field( | |
default=1.0, | |
metadata={"help": "loss weight for cross entropy"}, | |
) | |
ctc_weight: float = field( | |
default=0.0, | |
metadata={"help": "loss weiehgt for ctc in ASR"}, | |
) | |
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True): | |
if target.dim() == lprobs.dim() - 1: | |
target = target.unsqueeze(-1) | |
nll_loss = -lprobs.gather(dim=-1, index=target) | |
smooth_loss = -lprobs.sum(dim=-1, keepdim=True) | |
if ignore_index is not None: | |
pad_mask = target.eq(ignore_index) | |
nll_loss.masked_fill_(pad_mask, 0.0) | |
smooth_loss.masked_fill_(pad_mask, 0.0) | |
else: | |
nll_loss = nll_loss.squeeze(-1) | |
smooth_loss = smooth_loss.squeeze(-1) | |
if reduce: | |
nll_loss = nll_loss.sum() | |
smooth_loss = smooth_loss.sum() | |
eps_i = epsilon / (lprobs.size(-1) - 1) | |
loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss | |
return loss, nll_loss | |
class SpeechtoTextLoss(FairseqCriterion): | |
def __init__( | |
self, | |
cfg: SpeechtoTextLossConfig, | |
task: FairseqTask, | |
sentence_avg=True, | |
label_smoothing=0.1, | |
ignore_prefix_size=0, | |
report_accuracy=False, | |
ce_weight=1.0, | |
ctc_weight=0.0, | |
): | |
super().__init__(task) | |
self.blank_idx = ( | |
task.target_dictionary.index(task.blank_symbol) | |
if hasattr(task, "blank_symbol") | |
else 0 | |
) | |
#print ("self.blank_idx: ", self.blank_idx) | |
self.pad_idx = task.target_dictionary.pad() | |
self.eos_idx = task.target_dictionary.eos() | |
self.post_process = cfg.post_process | |
self.ce_weight = ce_weight | |
self.ctc_weight = ctc_weight | |
## for ce | |
self.sentence_avg = sentence_avg | |
self.eps = label_smoothing | |
self.ignore_prefix_size = ignore_prefix_size | |
self.report_accuracy = report_accuracy | |
if cfg.wer_args is not None: | |
( | |
cfg.wer_kenlm_model, | |
cfg.wer_lexicon, | |
cfg.wer_lm_weight, | |
cfg.wer_word_score, | |
) = eval(cfg.wer_args) | |
if cfg.wer_kenlm_model is not None: | |
from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder | |
dec_args = Namespace() | |
dec_args.nbest = 1 | |
dec_args.criterion = "ctc" | |
dec_args.kenlm_model = cfg.wer_kenlm_model | |
dec_args.lexicon = cfg.wer_lexicon | |
dec_args.beam = 50 | |
dec_args.beam_size_token = min(50, len(task.target_dictionary)) | |
dec_args.beam_threshold = min(50, len(task.target_dictionary)) | |
dec_args.lm_weight = cfg.wer_lm_weight | |
dec_args.word_score = cfg.wer_word_score | |
dec_args.unk_weight = -math.inf | |
dec_args.sil_weight = 0 | |
self.w2l_decoder = W2lKenLMDecoder(dec_args, task.target_dictionary) | |
else: | |
self.w2l_decoder = None | |
self.zero_infinity = cfg.zero_infinity | |
#self.sentence_avg = cfg.sentence_avg | |
if self.ce_weight > 0 and self.ctc_weight > 0: | |
logger.info("Using cross entropy loss and CTC loss for ASR") | |
elif self.ce_weight > 0: | |
logger.info("Only using CE loss") | |
elif self.ctc_weight > 0: | |
logger.info("Only using CTC loss for ASR") | |
else: | |
logger.info("ERROR") | |
def forward(self, model, sample, reduce=True): | |
if self.ce_weight == 0 and self.ctc_weight > 0: | |
sample["only_ctc"] = True | |
net_output_decoder, net_output = model(**sample["net_input"]) | |
if self.ce_weight > 0: | |
loss_ce, nll_loss_ce = self.compute_loss(model, net_output_decoder, sample, reduce=reduce) | |
#print ("loss_ce: ", loss_ce) | |
else: | |
nll_loss_ce = None | |
if self.ctc_weight > 0: | |
loss_ctc, lprobs, input_lengths = self.compute_loss_ctc(model, net_output, sample) | |
if self.ce_weight > 0 and self.ctc_weight > 0: | |
loss = self.ce_weight * loss_ce + self.ctc_weight * loss_ctc | |
elif self.ce_weight > 0: | |
loss = loss_ce | |
elif self.ctc_weight > 0: | |
loss = loss_ctc | |
else: | |
logger.info("ERROR: must ce_weight > 0 or ctc_weight > 0") | |
ntokens = ( | |
sample["ntokens"] if "ntokens" in sample else sample["target_lengths"].sum().item() | |
) | |
sample_size = sample["target"].size(0) if self.sentence_avg else ntokens | |
logging_output = { | |
"loss": loss.item(), | |
"ce_loss": loss_ce.item() if self.ce_weight > 0 else 0, | |
"ctc_loss": loss_ctc.item() if self.ctc_weight > 0 else 0, | |
"nll_loss": nll_loss_ce.item() if nll_loss_ce is not None else 0, | |
"ntokens": sample["ntokens"], | |
"nsentences": sample["target"].size(0), | |
"sample_size": sample_size, | |
} | |
if self.ce_weight > 0 and self.report_accuracy: | |
n_correct, total = self.compute_accuracy(model, net_output_decoder, sample) | |
logging_output["n_correct"] = utils.item(n_correct.item()) | |
logging_output["total"] = utils.item(total.data) | |
if self.ctc_weight > 0 and not model.training: | |
import editdistance | |
with torch.no_grad(): | |
lprobs_t = lprobs.transpose(0, 1).float().contiguous().cpu() | |
c_err = 0 | |
c_len = 0 | |
w_errs = 0 | |
w_len = 0 | |
wv_errs = 0 | |
for lp, t, inp_l in zip( | |
lprobs_t, | |
sample["target_label"] | |
if "target_label" in sample | |
else sample["target"], | |
input_lengths, | |
): | |
lp = lp[:inp_l].unsqueeze(0) | |
decoded = None | |
if self.w2l_decoder is not None: | |
decoded = self.w2l_decoder.decode(lp) | |
if len(decoded) < 1: | |
decoded = None | |
else: | |
decoded = decoded[0] | |
if len(decoded) < 1: | |
decoded = None | |
else: | |
decoded = decoded[0] | |
p = (t != self.task.target_dictionary.pad()) & ( | |
t != self.task.target_dictionary.eos() | |
) | |
targ = t[p] | |
targ_units = self.task.target_dictionary.string(targ) | |
targ_units_arr = targ.tolist() | |
toks = lp.argmax(dim=-1).unique_consecutive() | |
pred_units_arr = toks[toks != self.blank_idx].tolist() | |
c_err += editdistance.eval(pred_units_arr, targ_units_arr) | |
c_len += len(targ_units_arr) | |
targ_words = post_process(targ_units, self.post_process).split() | |
pred_units = self.task.target_dictionary.string(pred_units_arr) | |
pred_words_raw = post_process(pred_units, self.post_process).split() | |
if decoded is not None and "words" in decoded: | |
pred_words = decoded["words"] | |
w_errs += editdistance.eval(pred_words, targ_words) | |
wv_errs += editdistance.eval(pred_words_raw, targ_words) | |
else: | |
dist = editdistance.eval(pred_words_raw, targ_words) | |
w_errs += dist | |
wv_errs += dist | |
w_len += len(targ_words) | |
logging_output["wv_errors"] = wv_errs | |
logging_output["w_errors"] = w_errs | |
logging_output["w_total"] = w_len | |
logging_output["c_errors"] = c_err | |
logging_output["c_total"] = c_len | |
return loss, sample_size, logging_output | |
def compute_loss_ctc(self, model, net_output, sample): | |
lprobs = model.get_normalized_probs_for_ctc( | |
net_output, log_probs=True | |
).contiguous() # (T, B, C) from the encoder | |
if net_output["encoder_padding_mask"] is not None: | |
non_padding_mask = ~net_output["encoder_padding_mask"][0] | |
input_lengths = non_padding_mask.long().sum(-1) | |
else: | |
input_lengths = lprobs.new_full( | |
(lprobs.size(1),), lprobs.size(0), dtype=torch.long | |
) | |
pad_mask = (sample["target"] != self.pad_idx) & ( | |
sample["target"] != self.eos_idx | |
) | |
targets_flat = sample["target"].masked_select(pad_mask) | |
if "target_lengths" in sample: | |
target_lengths = sample["target_lengths"] | |
else: | |
target_lengths = pad_mask.sum(-1) | |
##processing | |
target_lengths = target_lengths - 1 | |
with torch.backends.cudnn.flags(enabled=False): | |
loss_ctc = F.ctc_loss( | |
lprobs, | |
targets_flat, | |
input_lengths, | |
target_lengths, | |
blank=self.blank_idx, | |
reduction="sum", | |
zero_infinity=True, | |
) | |
return loss_ctc, lprobs, input_lengths | |
## for ce | |
def get_lprobs_and_target(self, model, net_output, sample): | |
lprobs = model.get_normalized_probs(net_output, log_probs=True) | |
target = model.get_targets(sample, net_output) | |
if self.ignore_prefix_size > 0: | |
if getattr(lprobs, "batch_first", False): | |
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous() | |
target = target[:, self.ignore_prefix_size :].contiguous() | |
else: | |
lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous() | |
target = target[self.ignore_prefix_size :, :].contiguous() | |
return lprobs.view(-1, lprobs.size(-1)), target.view(-1) | |
def compute_loss(self, model, net_output, sample, reduce=True): | |
lprobs, target = self.get_lprobs_and_target(model, net_output, sample) | |
loss, nll_loss = label_smoothed_nll_loss( | |
lprobs, | |
target, | |
self.eps, | |
ignore_index=self.padding_idx, | |
reduce=reduce, | |
) | |
return loss, nll_loss | |
def compute_accuracy(self, model, net_output, sample): | |
lprobs, target = self.get_lprobs_and_target(model, net_output, sample) | |
mask = target.ne(self.padding_idx) | |
n_correct = torch.sum( | |
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)) | |
) | |
total = torch.sum(mask) | |
return n_correct, total | |
def reduce_metrics(logging_outputs) -> None: | |
"""Aggregate logging outputs from data parallel training.""" | |
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs)) | |
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) | |
ce_loss_sum = sum(log.get("ce_loss", 0) for log in logging_outputs) | |
ctc_loss_sum = sum(log.get("ctc_loss", 0) for log in logging_outputs) | |
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs)) | |
nsentences = utils.item( | |
sum(log.get("nsentences", 0) for log in logging_outputs) | |
) | |
sample_size = utils.item( | |
sum(log.get("sample_size", 0) for log in logging_outputs) | |
) | |
metrics.log_scalar( | |
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3 | |
) | |
metrics.log_scalar( | |
"ctc_loss", ctc_loss_sum / sample_size / math.log(2), ntokens, 2, round=3 | |
) | |
metrics.log_scalar( | |
"ce_loss", ce_loss_sum / ntokens, ntokens, 2, round=3 | |
) | |
metrics.log_scalar( | |
"nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, 2, round=3 | |
) | |
metrics.log_derived( | |
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg, 2) | |
) | |
total = utils.item(sum(log.get("total", 0) for log in logging_outputs)) | |
if total > 0: | |
metrics.log_scalar("total", total) | |
n_correct = utils.item( | |
sum(log.get("n_correct", 0) for log in logging_outputs) | |
) | |
metrics.log_scalar("n_correct", n_correct) | |
metrics.log_derived( | |
"accuracy", | |
lambda meters: round( | |
meters["n_correct"].sum * 100.0 / meters["total"].sum, 3 | |
) | |
if meters["total"].sum > 0 | |
else float("nan"), | |
2 | |
) | |
metrics.log_scalar("ntokens", ntokens) | |
metrics.log_scalar("nsentences", nsentences) | |
if sample_size != ntokens: | |
metrics.log_scalar( | |
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 | |
) | |
c_errors = sum(log.get("c_errors", 0) for log in logging_outputs) | |
metrics.log_scalar("_c_errors", c_errors) | |
c_total = sum(log.get("c_total", 0) for log in logging_outputs) | |
metrics.log_scalar("_c_total", c_total) | |
w_errors = sum(log.get("w_errors", 0) for log in logging_outputs) | |
metrics.log_scalar("_w_errors", w_errors) | |
wv_errors = sum(log.get("wv_errors", 0) for log in logging_outputs) | |
metrics.log_scalar("_wv_errors", wv_errors) | |
w_total = sum(log.get("w_total", 0) for log in logging_outputs) | |
metrics.log_scalar("_w_total", w_total) | |
if c_total > 0: | |
metrics.log_derived( | |
"uer", | |
lambda meters: safe_round( | |
meters["_c_errors"].sum * 100.0 / meters["_c_total"].sum, 3 | |
) | |
if meters["_c_total"].sum > 0 | |
else float("nan"), | |
) | |
if w_total > 0: | |
metrics.log_derived( | |
"wer", | |
lambda meters: safe_round( | |
meters["_w_errors"].sum * 100.0 / meters["_w_total"].sum, 3 | |
) | |
if meters["_w_total"].sum > 0 | |
else float("nan"), | |
) | |
metrics.log_derived( | |
"raw_wer", | |
lambda meters: safe_round( | |
meters["_wv_errors"].sum * 100.0 / meters["_w_total"].sum, 3 | |
) | |
if meters["_w_total"].sum > 0 | |
else float("nan"), | |
) | |
def logging_outputs_can_be_summed() -> bool: | |
""" | |
Whether the logging outputs returned by `forward` can be summed | |
across workers prior to calling `reduce_metrics`. Setting this | |
to True will improves distributed training speed. | |
""" | |
return True | |