Spaces:
Running
on
T4
Running
on
T4
"""Generate answers with GPT-3.5""" | |
# Note: you need to be using OpenAI Python v0.27.0 for the code below to work | |
import argparse | |
import json | |
import os | |
import time | |
import concurrent.futures | |
import openai | |
import tqdm | |
import shortuuid | |
MODEL = 'gpt-3.5-turbo' | |
MODEL_ID = 'gpt-3.5-turbo:20230327' | |
def get_answer(question_id: int, question: str, max_tokens: int): | |
ans = { | |
'answer_id': shortuuid.uuid(), | |
'question_id': question_id, | |
'model_id': MODEL_ID, | |
} | |
for _ in range(3): | |
try: | |
response = openai.ChatCompletion.create( | |
model=MODEL, | |
messages=[{ | |
'role': 'system', | |
'content': 'You are a helpful assistant.' | |
}, { | |
'role': 'user', | |
'content': question, | |
}], | |
max_tokens=max_tokens, | |
) | |
ans['text'] = response['choices'][0]['message']['content'] | |
return ans | |
except Exception as e: | |
print('[ERROR]', e) | |
ans['text'] = '#ERROR#' | |
time.sleep(1) | |
return ans | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='ChatGPT answer generation.') | |
parser.add_argument('-q', '--question') | |
parser.add_argument('-o', '--output') | |
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output') | |
args = parser.parse_args() | |
questions_dict = {} | |
with open(os.path.expanduser(args.question)) as f: | |
for line in f: | |
if not line: | |
continue | |
q = json.loads(line) | |
questions_dict[q['question_id']] = q['text'] | |
answers = [] | |
with concurrent.futures.ThreadPoolExecutor(max_workers=32) as executor: | |
futures = [] | |
for qid, question in questions_dict.items(): | |
future = executor.submit(get_answer, qid, question, args.max_tokens) | |
futures.append(future) | |
for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)): | |
answers.append(future.result()) | |
answers.sort(key=lambda x: x['question_id']) | |
with open(os.path.expanduser(args.output), 'w') as f: | |
table = [json.dumps(ans) for ans in answers] | |
f.write('\n'.join(table)) | |