Spaces:
Running
Running
Update textPreprocess.py
Browse files- textPreprocess.py +5 -3
textPreprocess.py
CHANGED
|
@@ -55,7 +55,8 @@ except Exception as e:
|
|
| 55 |
@torch.inference_mode()
|
| 56 |
def predict_text(text: str, max_length: int | None = None):
|
| 57 |
if model is None or tokenizer is None:
|
| 58 |
-
|
|
|
|
| 59 |
|
| 60 |
if max_length is None:
|
| 61 |
max_length = MAX_LEN
|
|
@@ -70,13 +71,14 @@ def predict_text(text: str, max_length: int | None = None):
|
|
| 70 |
return {"predicted_class": label, "confidence": float(probs[pred_id])}
|
| 71 |
except Exception as e:
|
| 72 |
print(f"Error during text prediction: {e}")
|
| 73 |
-
return {"predicted_class": "Human", "confidence":
|
| 74 |
|
| 75 |
# ββ 4) Batch (optional) ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 76 |
@torch.inference_mode()
|
| 77 |
def predict_batch(texts, batch_size=16):
|
| 78 |
if model is None or tokenizer is None:
|
| 79 |
-
|
|
|
|
| 80 |
|
| 81 |
results = []
|
| 82 |
for i in range(0, len(texts), batch_size):
|
|
|
|
| 55 |
@torch.inference_mode()
|
| 56 |
def predict_text(text: str, max_length: int | None = None):
|
| 57 |
if model is None or tokenizer is None:
|
| 58 |
+
print("Issue 1")
|
| 59 |
+
return {"predicted_class": "Human", "confidence": -100.0}
|
| 60 |
|
| 61 |
if max_length is None:
|
| 62 |
max_length = MAX_LEN
|
|
|
|
| 71 |
return {"predicted_class": label, "confidence": float(probs[pred_id])}
|
| 72 |
except Exception as e:
|
| 73 |
print(f"Error during text prediction: {e}")
|
| 74 |
+
return {"predicted_class": "Human", "confidence": -100.0}
|
| 75 |
|
| 76 |
# ββ 4) Batch (optional) ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 77 |
@torch.inference_mode()
|
| 78 |
def predict_batch(texts, batch_size=16):
|
| 79 |
if model is None or tokenizer is None:
|
| 80 |
+
print("Issue 2")
|
| 81 |
+
return [{"predicted_class": "Human", "confidence": -100.0} for _ in texts]
|
| 82 |
|
| 83 |
results = []
|
| 84 |
for i in range(0, len(texts), batch_size):
|