Spaces:
Running
Running
Upload detector.py
Browse files- detree/inference/detector.py +251 -0
detree/inference/detector.py
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""High-level detector interface for running DETree inference."""
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import List, Optional, Sequence
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
from torch.nn import functional as F
|
| 12 |
+
from torch.utils.data import DataLoader, Dataset
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
|
| 15 |
+
from detree.model.text_embedding import TextEmbeddingModel
|
| 16 |
+
from detree.utils.index import Indexer
|
| 17 |
+
|
| 18 |
+
__all__ = ["Detector", "Prediction"]
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def _to_numpy(value) -> np.ndarray:
|
| 22 |
+
if isinstance(value, np.ndarray):
|
| 23 |
+
return value
|
| 24 |
+
if torch.is_tensor(value):
|
| 25 |
+
return value.detach().cpu().numpy()
|
| 26 |
+
return np.asarray(value)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def _load_database(path: Path):
|
| 30 |
+
data = torch.load(path, map_location="cpu")
|
| 31 |
+
embeddings = data["embeddings"]
|
| 32 |
+
labels = data["labels"]
|
| 33 |
+
ids = data["ids"]
|
| 34 |
+
classes = data["classes"]
|
| 35 |
+
if not isinstance(embeddings, dict):
|
| 36 |
+
raise ValueError("Expected embeddings to be a dict keyed by layer index")
|
| 37 |
+
return embeddings, labels, ids, classes
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class TextDataset(Dataset):
|
| 41 |
+
def __init__(self, texts: Sequence[str]):
|
| 42 |
+
self._texts = [str(text) for text in texts]
|
| 43 |
+
|
| 44 |
+
def __len__(self) -> int:
|
| 45 |
+
return len(self._texts)
|
| 46 |
+
|
| 47 |
+
def __getitem__(self, idx: int):
|
| 48 |
+
return self._texts[idx], idx
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
@dataclass
|
| 52 |
+
class Prediction:
|
| 53 |
+
text: str
|
| 54 |
+
probability_ai: float
|
| 55 |
+
probability_human: float
|
| 56 |
+
label: str
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class Detector:
|
| 60 |
+
"""Wraps model + database logic for kNN predictions."""
|
| 61 |
+
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
database_path: Path,
|
| 65 |
+
model_name_or_path: str,
|
| 66 |
+
*,
|
| 67 |
+
pooling: str = "max",
|
| 68 |
+
max_length: int = 512,
|
| 69 |
+
batch_size: int = 8,
|
| 70 |
+
num_workers: int = 0,
|
| 71 |
+
top_k: int = 10,
|
| 72 |
+
threshold: float = 0.97,
|
| 73 |
+
layer: Optional[int] = None,
|
| 74 |
+
device: Optional[str] = None,
|
| 75 |
+
) -> None:
|
| 76 |
+
self.database_path = database_path
|
| 77 |
+
self.model_name_or_path = model_name_or_path
|
| 78 |
+
self.pooling = pooling
|
| 79 |
+
self.max_length = max_length
|
| 80 |
+
self.batch_size = batch_size
|
| 81 |
+
self.num_workers = num_workers
|
| 82 |
+
self.top_k = top_k
|
| 83 |
+
if not 0.0 <= threshold <= 1.0:
|
| 84 |
+
raise ValueError(
|
| 85 |
+
"threshold must be a probability between 0 and 1 (inclusive)."
|
| 86 |
+
)
|
| 87 |
+
self.threshold = threshold
|
| 88 |
+
self.device = torch.device(
|
| 89 |
+
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
embeddings, labels, ids, classes = _load_database(database_path)
|
| 93 |
+
self.classes = list(classes)
|
| 94 |
+
self.human_index = None
|
| 95 |
+
if "human" in self.classes:
|
| 96 |
+
self.human_index = self.classes.index("human")
|
| 97 |
+
|
| 98 |
+
self._raw_labels = labels
|
| 99 |
+
self._raw_ids = ids
|
| 100 |
+
|
| 101 |
+
self.layer_embeddings = {
|
| 102 |
+
int(layer): tensor.float() for layer, tensor in embeddings.items()
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
if isinstance(labels, dict):
|
| 106 |
+
self.layer_labels = {int(layer): tensor for layer, tensor in labels.items()}
|
| 107 |
+
else:
|
| 108 |
+
self.layer_labels = None
|
| 109 |
+
if isinstance(ids, dict):
|
| 110 |
+
self.layer_ids = {int(layer): tensor for layer, tensor in ids.items()}
|
| 111 |
+
else:
|
| 112 |
+
self.layer_ids = None
|
| 113 |
+
|
| 114 |
+
self.available_layers = sorted(self.layer_embeddings.keys())
|
| 115 |
+
if not self.available_layers:
|
| 116 |
+
raise ValueError("No layers found in the embedding database")
|
| 117 |
+
requested_layer = layer if layer is not None else self.available_layers[-1]
|
| 118 |
+
if requested_layer not in self.available_layers:
|
| 119 |
+
raise ValueError(f"Requested layer {layer} not present in database")
|
| 120 |
+
|
| 121 |
+
self.model = TextEmbeddingModel(
|
| 122 |
+
model_name_or_path,
|
| 123 |
+
output_hidden_states=True,
|
| 124 |
+
infer=True,
|
| 125 |
+
use_pooling=self.pooling,
|
| 126 |
+
).to(self.device)
|
| 127 |
+
self.model.eval()
|
| 128 |
+
self.tokenizer = self.model.tokenizer
|
| 129 |
+
|
| 130 |
+
if self.human_index is None:
|
| 131 |
+
raise ValueError(
|
| 132 |
+
"Database must include a 'human' entry in its classes list to compute probabilities."
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
self._configure_layer(requested_layer)
|
| 136 |
+
|
| 137 |
+
def _configure_layer(self, layer: int) -> None:
|
| 138 |
+
if layer not in self.layer_embeddings:
|
| 139 |
+
raise ValueError(f"Requested layer {layer} not present in database")
|
| 140 |
+
|
| 141 |
+
layer_embeddings = self.layer_embeddings[layer]
|
| 142 |
+
self.embedding_dim = layer_embeddings.shape[-1]
|
| 143 |
+
|
| 144 |
+
if self.layer_labels is not None:
|
| 145 |
+
layer_labels = self.layer_labels[layer]
|
| 146 |
+
else:
|
| 147 |
+
# Fall back to shared labels tensor when per-layer labels are unavailable.
|
| 148 |
+
layer_labels = self._raw_labels
|
| 149 |
+
|
| 150 |
+
if self.layer_ids is not None:
|
| 151 |
+
layer_ids = self.layer_ids[layer]
|
| 152 |
+
else:
|
| 153 |
+
layer_ids = self._raw_ids
|
| 154 |
+
|
| 155 |
+
train_embeddings = _to_numpy(layer_embeddings)
|
| 156 |
+
train_labels = _to_numpy(layer_labels).astype(np.int64)
|
| 157 |
+
train_ids = _to_numpy(layer_ids).astype(np.int64)
|
| 158 |
+
|
| 159 |
+
self.index = Indexer(self.embedding_dim)
|
| 160 |
+
label_dict = {}
|
| 161 |
+
for idx, label in zip(train_ids.tolist(), train_labels.tolist()):
|
| 162 |
+
label_dict[int(idx)] = 1 if int(label) == int(self.human_index) else 0
|
| 163 |
+
self.index.label_dict = label_dict
|
| 164 |
+
self.index.index_data(train_ids.tolist(), train_embeddings.astype(np.float32))
|
| 165 |
+
|
| 166 |
+
self.layer = layer
|
| 167 |
+
|
| 168 |
+
def set_layer(self, layer: int) -> None:
|
| 169 |
+
"""Switch the active database layer used for inference."""
|
| 170 |
+
if layer == self.layer:
|
| 171 |
+
return
|
| 172 |
+
self._configure_layer(layer)
|
| 173 |
+
|
| 174 |
+
def get_available_layers(self) -> List[int]:
|
| 175 |
+
return list(self.available_layers)
|
| 176 |
+
|
| 177 |
+
@torch.no_grad()
|
| 178 |
+
def _encode(self, texts: Sequence[str]) -> np.ndarray:
|
| 179 |
+
dataset = TextDataset(texts)
|
| 180 |
+
if len(dataset) == 0:
|
| 181 |
+
return np.zeros((0, self.embedding_dim), dtype=np.float32)
|
| 182 |
+
|
| 183 |
+
dataloader = DataLoader(
|
| 184 |
+
dataset,
|
| 185 |
+
batch_size=self.batch_size,
|
| 186 |
+
num_workers=self.num_workers,
|
| 187 |
+
shuffle=False,
|
| 188 |
+
collate_fn=lambda batch: tuple(zip(*batch)),
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
all_embeddings: List[torch.Tensor] = []
|
| 192 |
+
all_indices: List[int] = []
|
| 193 |
+
for texts_batch, indices_batch in tqdm(
|
| 194 |
+
dataloader, desc="Encoding", leave=False
|
| 195 |
+
):
|
| 196 |
+
encoded_batch = self.tokenizer.batch_encode_plus(
|
| 197 |
+
list(texts_batch),
|
| 198 |
+
return_tensors="pt",
|
| 199 |
+
max_length=self.max_length,
|
| 200 |
+
padding="max_length",
|
| 201 |
+
truncation=True,
|
| 202 |
+
)
|
| 203 |
+
encoded_batch = {k: v.to(self.device) for k, v in encoded_batch.items()}
|
| 204 |
+
embeddings = self.model(encoded_batch, hidden_states=True)
|
| 205 |
+
embeddings = F.normalize(embeddings, dim=-1)
|
| 206 |
+
all_embeddings.append(embeddings.cpu())
|
| 207 |
+
all_indices.extend(indices_batch)
|
| 208 |
+
|
| 209 |
+
stacked = torch.cat(all_embeddings, dim=0) if all_embeddings else torch.empty(0)
|
| 210 |
+
if stacked.numel() == 0:
|
| 211 |
+
return np.zeros((0, self.embedding_dim), dtype=np.float32)
|
| 212 |
+
order = torch.tensor(all_indices, dtype=torch.long)
|
| 213 |
+
if order.numel() != stacked.shape[0]:
|
| 214 |
+
raise RuntimeError("Index and embedding counts do not match.")
|
| 215 |
+
sorted_indices = torch.argsort(order)
|
| 216 |
+
stacked = stacked[sorted_indices]
|
| 217 |
+
stacked = stacked.permute(1, 0, 2)
|
| 218 |
+
selected_layer = stacked[self.layer]
|
| 219 |
+
return selected_layer.numpy().astype(np.float32)
|
| 220 |
+
|
| 221 |
+
def predict(self, texts: Sequence[str]) -> List[Prediction]:
|
| 222 |
+
texts_list = [str(text) for text in texts]
|
| 223 |
+
embeddings = self._encode(texts_list)
|
| 224 |
+
if embeddings.shape[0] == 0:
|
| 225 |
+
return []
|
| 226 |
+
|
| 227 |
+
results = self.index.search_knn(
|
| 228 |
+
embeddings,
|
| 229 |
+
self.top_k,
|
| 230 |
+
index_batch_size=max(1, min(self.top_k, 128)),
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
predictions: List[Prediction] = []
|
| 234 |
+
for text, (_ids, scores, labels) in zip(texts_list, results):
|
| 235 |
+
scores_tensor = torch.from_numpy(np.asarray(scores))
|
| 236 |
+
weights = torch.softmax(scores_tensor, dim=0)
|
| 237 |
+
label_tensor = torch.tensor(labels, dtype=torch.float32)
|
| 238 |
+
probability_human = float(torch.dot(weights, label_tensor).item())
|
| 239 |
+
probability_human = max(0.0, min(1.0, probability_human))
|
| 240 |
+
probability_ai = float(max(0.0, min(1.0, 1.0 - probability_human)))
|
| 241 |
+
label = "Human" if probability_human >= self.threshold else "AI"
|
| 242 |
+
predictions.append(
|
| 243 |
+
Prediction(
|
| 244 |
+
text=text,
|
| 245 |
+
probability_ai=probability_ai,
|
| 246 |
+
probability_human=probability_human,
|
| 247 |
+
label=label,
|
| 248 |
+
)
|
| 249 |
+
)
|
| 250 |
+
return predictions
|
| 251 |
+
|