MARI-posa commited on
Commit
a8ceb05
·
1 Parent(s): 5937ed9

Upload 9 files

Browse files
main.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ st.set_page_config(layout="wide")
4
+
5
+
6
+ video_html = """
7
+ <style>
8
+
9
+ #myVideo {
10
+ position: fixed;
11
+ right: 0;
12
+ bottom: 0;
13
+ min-width: 100%;
14
+ min-height: 100%;
15
+ }
16
+
17
+ .content {
18
+ position: relative; /* Изменено на position: relative; */
19
+ bottom: 0;
20
+ background: rgba(0, 0, 0, 0.5);
21
+ color: #f1f1f1;
22
+ width: 100%;
23
+ padding: 20px;
24
+ }
25
+
26
+ [data-testid="stToolbar"] {
27
+ right: 2rem;
28
+ }
29
+
30
+ div.css-d6uc01.e1tzin5v0 {
31
+ background-color: rgba(238, 238, 238, 0.5);
32
+ border: 10px solid #EEEEEE;
33
+ padding: 5% 5% 5% 10%;
34
+ border-radius: 5px;
35
+ }
36
+
37
+ </style>
38
+ <video autoplay muted loop id="myVideo">
39
+ <source src="https://rr4---sn-gvnuxaxjvh-c35z.googlevideo.com/videoplayback?expire=1686269230&ei=zhiCZJXvB-P7zLUP3K6SeA&ip=5.182.110.165&id=o-AOMElUbQqPajhZX5aErHwivnMyjp6i6a4uDOp4L6B3c8&itag=399&aitags=133%2C134%2C135%2C136%2C137%2C160%2C242%2C243%2C244%2C247%2C248%2C278%2C394%2C395%2C396%2C397%2C398%2C399&source=youtube&requiressl=yes&spc=qEK7B7Pbxq1VUrzvbs7fHjl6u6WKTaCFFP3qRYtBLA&vprv=1&svpuc=1&mime=video%2Fmp4&ns=NXLw4J-BddEHxlAHSqJEAZAN&gir=yes&clen=198203522&dur=3609.999&lmt=1630799721330343&keepalive=yes&fexp=24007246,24350018,51000011&beids=24350018&c=WEB&txp=5432434&n=qTHryvAvH9uy7A&sparams=expire%2Cei%2Cip%2Cid%2Caitags%2Csource%2Crequiressl%2Cspc%2Cvprv%2Csvpuc%2Cmime%2Cns%2Cgir%2Cclen%2Cdur%2Clmt&sig=AOq0QJ8wRQIgMOr2k93xnKlQJTWwD400i4MLLRM7EjtE5MegwNmDkqECIQDOrlXOzYVXJZHHUG4jKkur9BYeQZWVRvj8kF0zse7jEg%3D%3D&redirect_counter=1&rm=sn-vgqee776&req_id=9fc7062719efa3ee&cms_redirect=yes&cmsv=e&ipbypass=yes&mh=D8&mip=5.228.41.215&mm=31&mn=sn-gvnuxaxjvh-c35z&ms=au&mt=1686247277&mv=m&mvi=4&pcm2cms=yes&pl=21&lsparams=ipbypass,mh,mip,mm,mn,ms,mv,mvi,pcm2cms,pl&lsig=AG3C_xAwRQIgTj1QLulfeB4eyrjf3vVnn4YAhZgSSDckaKESfmGwLh0CIQCDhcJaLoz9B45N-6cBAS52R3k9vbyeQsDTjhIAAtWA0w%3D%3D")>
40
+ Your browser does not support HTML5 video.
41
+ </video>
42
+ """
43
+
44
+ st.markdown(video_html, unsafe_allow_html=True)
45
+
46
+ col1, col2, col3 = st.columns([3,5,2])
47
+
48
+ with col2:
49
+ st.title('✨NLP Project by GPT-Team✨')
50
+
51
+ col1, col2, col3 = st.columns([2,5,2])
52
+
53
+ with col2:
54
+ st.markdown("<div style='text-align: center; font-size: 30px;'>Team members:</div>", unsafe_allow_html=True)
55
+ st.markdown("<div style='text-align: center; font-size: 25px;'>✨ Maria K.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;✨ Osana B.</div>", unsafe_allow_html=True)
56
+ st.markdown("<div style='text-align: center; font-size: 25px;'>✨ Veronika K.&nbsp;&nbsp;&nbsp;&nbsp;✨ Anna S.</div>", unsafe_allow_html=True)
57
+ st.markdown("<div style='text-align: center; font-size: 25px;'></div>", unsafe_allow_html=True)
58
+ st.markdown("<div style='text-align: center; font-size: 25px;'></div>", unsafe_allow_html=True)
pages/.ipynb_checkpoints/Без названия-checkpoint.ipynb ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [],
3
+ "metadata": {},
4
+ "nbformat": 4,
5
+ "nbformat_minor": 5
6
+ }
pages/.ipynb_checkpoints/✨BERT-checkpoint.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import base64
3
+ import streamlit as st
4
+ import plotly.express as px
5
+
6
+ df = px.data.iris()
7
+
8
+ @st.cache_data
9
+ def get_img_as_base64(file):
10
+ with open(file, "rb") as f:
11
+ data = f.read()
12
+ return base64.b64encode(data).decode()
13
+
14
+
15
+ page_bg_img = f"""
16
+ <style>
17
+ [data-testid="stAppViewContainer"] > .main {{
18
+ background-image: url("https://i.ibb.co/kH8bcr4/1368432.jpg");
19
+ background-size: 115%;
20
+ background-position: top left;
21
+ background-repeat: no-repeat;
22
+ background-attachment: local;
23
+ }}
24
+
25
+ [data-testid="stSidebar"] > div:first-child {{
26
+ background-image: url("https://ibb.co/ZBkdJRg");
27
+ background-size: 115%;
28
+ background-position: center;
29
+ background-repeat: no-repeat;
30
+ background-attachment: fixed;
31
+ }}
32
+
33
+ [data-testid="stHeader"] {{
34
+ background: rgba(0,0,0,0);
35
+ }}
36
+
37
+ [data-testid="stToolbar"] {{
38
+ right: 2rem;
39
+ }}
40
+
41
+ div.css-1n76uvr.e1tzin5v0 {{
42
+ background-color: rgba(238, 238, 238, 0.5);
43
+ border: 10px solid #EEEEEE;
44
+ padding: 5% 5% 5% 10%;
45
+ border-radius: 5px;
46
+ }}
47
+
48
+ </style>
49
+ """
50
+ st.markdown(page_bg_img, unsafe_allow_html=True)
51
+
52
+ import tensorflow as tf
53
+ from tensorflow import keras
54
+ import numpy as np
55
+ import matplotlib.pyplot as plt
56
+
57
+ ################################################################################################
58
+ import torch
59
+ import numpy as np
60
+ import transformers
61
+ import pickle
62
+ from sklearn.linear_model import LogisticRegression
63
+
64
+ #def load_model():
65
+ model = transformers.DistilBertModel.from_pretrained(
66
+ "distilbert-base-uncased",
67
+ output_attentions = False,
68
+ output_hidden_states = False
69
+ )
70
+ #model.load_state_dict(torch.load('model/modelbert.pt', map_location=torch.device('cpu')))
71
+ tokenizer = transformers.DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
72
+ #return model_finetuned, tokenizer
73
+
74
+ def preprocess_text(text_input, max_len, tokenizer):
75
+ input_tokens = tokenizer(
76
+ text_input,
77
+ return_tensors='pt',
78
+ padding=True,
79
+ max_length=max_len,
80
+ truncation = True
81
+ )
82
+ return input_tokens
83
+
84
+ def predict_sentiment(model, input_tokens):
85
+ #st.write(input_tokens)
86
+ ans = {0: "NEGATIVE", 1: "POSITIVE"}
87
+ last_hidden_states = model(**input_tokens)
88
+ #st.write('last_hidden_states ok')
89
+ vectors = last_hidden_states[0][:,0,:].detach().cpu().numpy()
90
+ #st.write('vectors ok')
91
+ #output = model(**input_tokens).last_hidden_states.detach().numpy()
92
+ with open('model/modelbert1.pkl', 'rb') as file:
93
+ cls = pickle.load(file)
94
+ result = ans[cls.predict(vectors)[0]]
95
+ return result
96
+
97
+ col1, col2, col3 = st.columns([1,5,1])
98
+ with col2:
99
+
100
+ st.title('Text sentiment analysis')
101
+
102
+ col1, col2, col3 = st.columns([2,5,2])
103
+ with col2:
104
+
105
+ max_len = st.slider('Maximum word length', 0, 500, 250)
106
+
107
+ text_input = st.text_input("Enter some text")
108
+ #model, tokenizer = load_model()
109
+
110
+ if text_input:
111
+ input_tokens = preprocess_text(text_input, max_len, tokenizer)
112
+ output = predict_sentiment(model, input_tokens)
113
+ st.write(output)
114
+
115
+
116
+
117
+ ################################################################################################
118
+ #st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True)
119
+ #st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True)
pages/.ipynb_checkpoints/✨first-checkpoint.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import base64
3
+ import streamlit as st
4
+ import plotly.express as px
5
+
6
+ df = px.data.iris()
7
+
8
+ @st.cache_data
9
+ def get_img_as_base64(file):
10
+ with open(file, "rb") as f:
11
+ data = f.read()
12
+ return base64.b64encode(data).decode()
13
+
14
+
15
+ page_bg_img = f"""
16
+ <style>
17
+ [data-testid="stAppViewContainer"] > .main {{
18
+ background-image: url("https://wallpapercave.com/wp/wp6480460.jpg");
19
+ background-size: 115%;
20
+ background-position: top left;
21
+ background-repeat: no-repeat;
22
+ background-attachment: local;
23
+ }}
24
+
25
+ [data-testid="stSidebar"] > div:first-child {{
26
+ background-image: url("https://ibb.co/ZBkdJRg");
27
+ background-size: 115%;
28
+ background-position: center;
29
+ background-repeat: no-repeat;
30
+ background-attachment: fixed;
31
+ }}
32
+
33
+ [data-testid="stHeader"] {{
34
+ background: rgba(0,0,0,0);
35
+ }}
36
+
37
+ [data-testid="stToolbar"] {{
38
+ right: 2rem;
39
+ }}
40
+
41
+ div.css-1n76uvr.e1tzin5v0 {{
42
+ background-color: rgba(238, 238, 238, 0.5);
43
+ border: 10px solid #EEEEEE;
44
+ padding: 5% 5% 5% 10%;
45
+ border-radius: 5px;
46
+ }}
47
+
48
+
49
+ </style>
50
+ """
51
+ st.markdown(page_bg_img, unsafe_allow_html=True)
52
+
53
+ import tensorflow as tf
54
+ from tensorflow import keras
55
+ import numpy as np
56
+ import matplotlib.pyplot as plt
57
+
58
+ ################################################################################################
59
+ #Тут нужно будет добаить модель. Ниже пример:
60
+
61
+ # # Загрузка модели
62
+ # model = keras.models.load_model('cgan_model.h5')
63
+
64
+ # # Задание размерностей входных данных модели
65
+ # latent_dim = 128
66
+ # num_classes = 10
67
+
68
+ # # Функция для генерации изображения
69
+ # def generate_image(number):
70
+ # random_latent_vector = tf.random.normal(shape=(1, latent_dim))
71
+ # one_hot_label = tf.one_hot([number], num_classes)
72
+ # input_data = tf.concat([random_latent_vector, one_hot_label], axis=1)
73
+
74
+ # generated_image = model.predict(input_data)
75
+ # generated_image = generated_image.reshape(28, 28)
76
+ # generated_image = tf.image.resize(generated_image[None, ...], (28, 28))[0] # Добавлено [None, ...] для добавления измерения
77
+ # return generated_image
78
+
79
+ ################################################################################################
80
+
81
+ #Оформление
82
+
83
+ col1, col2, col3 = st.columns([1,5,1])
84
+ with col2:
85
+
86
+ st.title('Название модели')
87
+
88
+ col1, col2, col3 = st.columns([2,5,2])
89
+ with col2:
90
+
91
+ number = st.slider('Выберите число:', 0, 9, step=1)
92
+
93
+ # Вставка кода с кнопками
94
+ container = st.container()
95
+
96
+ # Настройка стиля контейнера с помощью CSS
97
+ container.markdown(
98
+ """
99
+ <style>
100
+ .container-style {
101
+ display: flex;
102
+ justify-content: center;
103
+ align-items: center;
104
+ margin-top: 20px;
105
+ margin-bottom: 20px;
106
+ }
107
+ </style>
108
+ """,
109
+ unsafe_allow_html=True
110
+ )
111
+
112
+ # Расположение кнопок внутри контейнера
113
+ with container:
114
+ col1, col2, col3 = st.columns(3)
115
+
116
+ # Кнопки для перехода на другие страницы
117
+ if col1.button('Страница 1'):
118
+ # Действия при нажатии кнопки для перехода на Страницу 1
119
+ st.experimental_set_query_params(page='?page=1')
120
+
121
+ if col2.button('Страница 2'):
122
+ # Действия при нажатии кнопки для перехода на Страницу 2
123
+ st.experimental_set_query_params(page='2')
124
+
125
+ if col3.button('Страница 3'):
126
+ # Действия при нажатии кнопки для перехода на Страницу 3
127
+ st.experimental_set_query_params(page='third.py')
pages/.ipynb_checkpoints/✨third-checkpoint.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import base64
3
+ import streamlit as st
4
+ import plotly.express as px
5
+
6
+ df = px.data.iris()
7
+
8
+ @st.cache_data
9
+ def get_img_as_base64(file):
10
+ with open(file, "rb") as f:
11
+ data = f.read()
12
+ return base64.b64encode(data).decode()
13
+
14
+
15
+ #img = get_img_as_base64("https://catherineasquithgallery.com/uploads/posts/2021-02/1612739741_65-p-goluboi-fon-tsifri-110.jpg")
16
+
17
+ page_bg_img = f"""
18
+ <style>
19
+ [data-testid="stAppViewContainer"] > .main {{
20
+ background-image: url("https://wallpapercave.com/wp/wp11966930.jpg");
21
+ background-size: 115%;
22
+ background-position: top left;
23
+ background-repeat: no-repeat;
24
+ background-attachment: local;
25
+ }}
26
+
27
+ [data-testid="stSidebar"] > div:first-child {{
28
+ background-image: url("https://ibb.co/ZBkdJRg");
29
+ background-size: 115%;
30
+ background-position: center;
31
+ background-repeat: no-repeat;
32
+ background-attachment: fixed;
33
+ }}
34
+
35
+ [data-testid="stHeader"] {{
36
+ background: rgba(0,0,0,0);
37
+ }}
38
+
39
+ [data-testid="stToolbar"] {{
40
+ right: 2rem;
41
+ }}
42
+
43
+ div.css-1n76uvr.e1tzin5v0 {{
44
+ background-color: rgba(238, 238, 238, 0.5);
45
+ border: 10px solid #EEEEEE;
46
+ padding: 5% 5% 5% 10%;
47
+ border-radius: 5px;
48
+ }}
49
+
50
+ </style>
51
+ """
52
+ st.markdown(page_bg_img, unsafe_allow_html=True)
53
+
54
+ import tensorflow as tf
55
+ from tensorflow import keras
56
+ import numpy as np
57
+ import matplotlib.pyplot as plt
58
+
59
+ ################################################################################################
60
+ #Тут нужно будет добаить модель. Ниже пример:
61
+
62
+ # # Загрузка модели
63
+ # model = keras.models.load_model('cgan_model.h5')
64
+
65
+ # # Задание размерностей входных данных модели
66
+ # latent_dim = 128
67
+ # num_classes = 10
68
+
69
+ # # Функция для генерации изображения
70
+ # def generate_image(number):
71
+ # random_latent_vector = tf.random.normal(shape=(1, latent_dim))
72
+ # one_hot_label = tf.one_hot([number], num_classes)
73
+ # input_data = tf.concat([random_latent_vector, one_hot_label], axis=1)
74
+
75
+ # generated_image = model.predict(input_data)
76
+ # generated_image = generated_image.reshape(28, 28)
77
+ # generated_image = tf.image.resize(generated_image[None, ...], (28, 28))[0] # Добавлено [None, ...] для добавления измерения
78
+ # return generated_image
79
+
80
+ ################################################################################################
81
+
82
+ #Оформление
83
+
84
+ col1, col2, col3 = st.columns([1,5,1])
85
+ with col2:
86
+
87
+ st.title('Название модели')
88
+
89
+ col1, col2, col3 = st.columns([2,5,2])
90
+ with col2:
91
+
92
+ number = st.slider('Выберите число:', 0, 9, step=1)
93
+
94
+ ################################################################################################
95
+ # Часть, отображаемая на странице
96
+
97
+ # number = st.slider('Выберите число:', 0, 9, step=1)
98
+
99
+
100
+ # #col1.subheader("Гистограмма total_bill:")
101
+
102
+ # # Генерация и отображение изображения
103
+ # generated_image = generate_image(number)
104
+ # generated_image_np = generated_image.numpy() # Преобразование в массив NumPy
105
+ # fig, ax = plt.subplots()
106
+ # ax.scatter([1, 2], [1, 2], color='black')
107
+ # plt.imshow(generated_image_np, cmap='gray')
108
+ # plt.axis('off')
109
+ # fig.set_size_inches(3, 3)
110
+ # st.pyplot(fig)
111
+
112
+ ################################################################################################
113
+ #st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True)
114
+ #st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True)
pages/Без названия.ipynb ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "99cbbaf3-6005-4e37-8855-f1d675211128",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "absl-py==1.4.0\n",
14
+ "aiofiles==23.1.0\n",
15
+ "aiogram==2.25.1\n",
16
+ "aiohttp==3.8.4\n",
17
+ "aiosignal==1.3.1\n",
18
+ "altair==4.2.2\n",
19
+ "anyio @ file:///home/conda/feedstock_root/build_artifacts/anyio_1666191106763/work/dist\n",
20
+ "appdirs==1.4.4\n",
21
+ "argon2-cffi @ file:///home/conda/feedstock_root/build_artifacts/argon2-cffi_1640817743617/work\n",
22
+ "argon2-cffi-bindings @ file:///home/conda/feedstock_root/build_artifacts/argon2-cffi-bindings_1666850768662/work\n",
23
+ "asttokens==2.2.1\n",
24
+ "astunparse==1.6.3\n",
25
+ "async-timeout==4.0.2\n",
26
+ "attrs @ file:///home/conda/feedstock_root/build_artifacts/attrs_1671632566681/work\n",
27
+ "Babel==2.9.1\n",
28
+ "backcall==0.2.0\n",
29
+ "backports.functools-lru-cache @ file:///home/conda/feedstock_root/build_artifacts/backports.functools_lru_cache_1618230623929/work\n",
30
+ "beautifulsoup4 @ file:///home/conda/feedstock_root/build_artifacts/beautifulsoup4_1679322162244/work\n",
31
+ "bleach @ file:///home/conda/feedstock_root/build_artifacts/bleach_1674535352125/work\n",
32
+ "blinker==1.6.1\n",
33
+ "brotlipy @ file:///home/conda/feedstock_root/build_artifacts/brotlipy_1666764671472/work\n",
34
+ "cachetools==5.3.0\n",
35
+ "catboost==1.2\n",
36
+ "certifi==2022.12.7\n",
37
+ "cffi @ file:///home/conda/feedstock_root/build_artifacts/cffi_1671179353105/work\n",
38
+ "charset-normalizer @ file:///home/conda/feedstock_root/build_artifacts/charset-normalizer_1661170624537/work\n",
39
+ "click==8.1.3\n",
40
+ "cloudpickle==2.2.1\n",
41
+ "cmake==3.25.0\n",
42
+ "colorama @ file:///home/conda/feedstock_root/build_artifacts/colorama_1666700638685/work\n",
43
+ "comm==0.1.3\n",
44
+ "conda==23.1.0\n",
45
+ "conda-package-handling @ file:///home/conda/feedstock_root/build_artifacts/conda-package-handling_1669907009957/work\n",
46
+ "conda_package_streaming @ file:///home/conda/feedstock_root/build_artifacts/conda-package-streaming_1669733752472/work\n",
47
+ "contourpy==1.0.7\n",
48
+ "cryptography @ file:///home/conda/feedstock_root/build_artifacts/cryptography-split_1675828607645/work\n",
49
+ "cycler==0.11.0\n",
50
+ "Cython==0.29.34\n",
51
+ "debugpy==1.6.6\n",
52
+ "decorator==5.1.1\n",
53
+ "defusedxml @ file:///home/conda/feedstock_root/build_artifacts/defusedxml_1615232257335/work\n",
54
+ "Deprecated==1.2.13\n",
55
+ "entrypoints @ file:///home/conda/feedstock_root/build_artifacts/entrypoints_1643888246732/work\n",
56
+ "executing==1.2.0\n",
57
+ "fastapi==0.95.2\n",
58
+ "fastjsonschema @ file:///home/conda/feedstock_root/build_artifacts/python-fastjsonschema_1677336799617/work/dist\n",
59
+ "ffmpy==0.3.0\n",
60
+ "filelock==3.9.0\n",
61
+ "flatbuffers==23.5.26\n",
62
+ "flit_core @ file:///home/conda/feedstock_root/build_artifacts/flit-core_1667734568827/work/source/flit_core\n",
63
+ "fonttools==4.39.3\n",
64
+ "frozendict==2.3.7\n",
65
+ "frozenlist==1.3.3\n",
66
+ "fsspec==2023.5.0\n",
67
+ "gast==0.4.0\n",
68
+ "gitdb==4.0.10\n",
69
+ "GitPython==3.1.31\n",
70
+ "google-auth==2.19.1\n",
71
+ "google-auth-oauthlib==1.0.0\n",
72
+ "google-pasta==0.2.0\n",
73
+ "gradio==3.32.0\n",
74
+ "gradio_client==0.2.5\n",
75
+ "graphviz==0.20.1\n",
76
+ "grpcio==1.54.2\n",
77
+ "h11==0.14.0\n",
78
+ "h5py==3.8.0\n",
79
+ "html5lib==1.1\n",
80
+ "httpcore==0.17.2\n",
81
+ "httpx==0.24.1\n",
82
+ "huggingface-hub==0.14.1\n",
83
+ "humanize==4.6.0\n",
84
+ "idna @ file:///home/conda/feedstock_root/build_artifacts/idna_1663625384323/work\n",
85
+ "importlib-metadata @ file:///home/conda/feedstock_root/build_artifacts/importlib-metadata_1679167925176/work\n",
86
+ "importlib-resources @ file:///home/conda/feedstock_root/build_artifacts/importlib_resources_1676919000169/work\n",
87
+ "ipykernel==6.22.0\n",
88
+ "ipython==8.12.0\n",
89
+ "ipython-genutils==0.2.0\n",
90
+ "jax==0.4.11\n",
91
+ "jedi==0.18.2\n",
92
+ "Jinja2 @ file:///home/conda/feedstock_root/build_artifacts/jinja2_1654302431367/work\n",
93
+ "joblib==1.2.0\n",
94
+ "json5 @ file:///home/conda/feedstock_root/build_artifacts/json5_1600692310011/work\n",
95
+ "jsonschema @ file:///home/conda/feedstock_root/build_artifacts/jsonschema-meta_1669810440410/work\n",
96
+ "jupyter-events @ file:///home/conda/feedstock_root/build_artifacts/jupyter_events_1673559782596/work\n",
97
+ "jupyter_client==8.1.0\n",
98
+ "jupyter_core==5.3.0\n",
99
+ "jupyter_server @ file:///home/conda/feedstock_root/build_artifacts/jupyter_server_1679073341944/work\n",
100
+ "jupyter_server_terminals @ file:///home/conda/feedstock_root/build_artifacts/jupyter_server_terminals_1673491454549/work\n",
101
+ "jupyterlab @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_1666613090338/work\n",
102
+ "jupyterlab-pygments @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_pygments_1649936611996/work\n",
103
+ "jupyterlab_server @ file:///home/conda/feedstock_root/build_artifacts/jupyterlab_server_1679528718717/work\n",
104
+ "keras==2.12.0\n",
105
+ "kiwisolver==1.4.4\n",
106
+ "libclang==16.0.0\n",
107
+ "linkify-it-py==2.0.2\n",
108
+ "lit==15.0.7\n",
109
+ "llvmlite==0.40.0\n",
110
+ "lxml==4.9.2\n",
111
+ "magic-filter==1.0.9\n",
112
+ "Markdown==3.4.3\n",
113
+ "markdown-it-py==2.2.0\n",
114
+ "MarkupSafe @ file:///home/conda/feedstock_root/build_artifacts/markupsafe_1674135787083/work\n",
115
+ "matplotlib==3.7.1\n",
116
+ "matplotlib-inline==0.1.6\n",
117
+ "mdit-py-plugins==0.3.3\n",
118
+ "mdurl==0.1.2\n",
119
+ "mistune @ file:///home/conda/feedstock_root/build_artifacts/mistune_1675771498296/work\n",
120
+ "ml-dtypes==0.1.0\n",
121
+ "mlxtend==0.22.0\n",
122
+ "mpmath==1.2.1\n",
123
+ "multidict==6.0.4\n",
124
+ "multitasking==0.0.11\n",
125
+ "nbclassic @ file:///home/conda/feedstock_root/build_artifacts/nbclassic_1678277563913/work\n",
126
+ "nbclient @ file:///home/conda/feedstock_root/build_artifacts/nbclient_1669795076334/work\n",
127
+ "nbconvert @ file:///home/conda/feedstock_root/build_artifacts/nbconvert-meta_1674590374792/work\n",
128
+ "nbformat @ file:///home/conda/feedstock_root/build_artifacts/nbformat_1679336765223/work\n",
129
+ "nest-asyncio==1.5.6\n",
130
+ "networkx==3.0\n",
131
+ "nibabel==5.1.0\n",
132
+ "nltk==3.8.1\n",
133
+ "notebook @ file:///home/conda/feedstock_root/build_artifacts/notebook_1678109761260/work\n",
134
+ "notebook_shim @ file:///home/conda/feedstock_root/build_artifacts/notebook-shim_1667478401171/work\n",
135
+ "numba==0.57.0\n",
136
+ "numpy==1.23.5\n",
137
+ "oauthlib==3.2.2\n",
138
+ "opt-einsum==3.3.0\n",
139
+ "orjson==3.8.14\n",
140
+ "packaging==23.0\n",
141
+ "pandas==1.5.3\n",
142
+ "pandocfilters @ file:///home/conda/feedstock_root/build_artifacts/pandocfilters_1631603243851/work\n",
143
+ "parso==0.8.3\n",
144
+ "patsy==0.5.3\n",
145
+ "pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1667297516076/work\n",
146
+ "pickleshare==0.7.5\n",
147
+ "Pillow==9.5.0\n",
148
+ "pkgutil_resolve_name @ file:///home/conda/feedstock_root/build_artifacts/pkgutil-resolve-name_1633981968097/work\n",
149
+ "platformdirs==3.2.0\n",
150
+ "plotly==5.14.1\n",
151
+ "pluggy @ file:///home/conda/feedstock_root/build_artifacts/pluggy_1667232663820/work\n",
152
+ "pmdarima==2.0.3\n",
153
+ "prometheus-client @ file:///home/conda/feedstock_root/build_artifacts/prometheus_client_1674535637125/work\n",
154
+ "prompt-toolkit==3.0.38\n",
155
+ "protobuf==3.20.3\n",
156
+ "psutil==5.9.4\n",
157
+ "ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1609419310487/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl\n",
158
+ "pure-eval==0.2.2\n",
159
+ "pyarrow==11.0.0\n",
160
+ "pyasn1==0.5.0\n",
161
+ "pyasn1-modules==0.3.0\n",
162
+ "pycosat @ file:///home/conda/feedstock_root/build_artifacts/pycosat_1666836542287/work\n",
163
+ "pycparser @ file:///home/conda/feedstock_root/build_artifacts/pycparser_1636257122734/work\n",
164
+ "pydantic==1.10.8\n",
165
+ "pydeck==0.8.0\n",
166
+ "pydub==0.25.1\n",
167
+ "pyenchant==3.2.2\n",
168
+ "Pygments==2.14.0\n",
169
+ "Pympler==1.0.1\n",
170
+ "pyOpenSSL @ file:///home/conda/feedstock_root/build_artifacts/pyopenssl_1672659226110/work\n",
171
+ "pyparsing==3.0.9\n",
172
+ "pyrsistent @ file:///home/conda/feedstock_root/build_artifacts/pyrsistent_1672681463845/work\n",
173
+ "PySocks @ file:///home/conda/feedstock_root/build_artifacts/pysocks_1661604839144/work\n",
174
+ "python-dateutil==2.8.2\n",
175
+ "python-json-logger @ file:///home/conda/feedstock_root/build_artifacts/python-json-logger_1677079630776/work\n",
176
+ "python-multipart==0.0.6\n",
177
+ "python-telegram-bot==20.3\n",
178
+ "pytz @ file:///home/conda/feedstock_root/build_artifacts/pytz_1679742222779/work\n",
179
+ "pytz-deprecation-shim==0.1.0.post0\n",
180
+ "PyYAML @ file:///home/conda/feedstock_root/build_artifacts/pyyaml_1666772395347/work\n",
181
+ "pyzmq==25.0.2\n",
182
+ "regex==2023.5.5\n",
183
+ "requests @ file:///home/conda/feedstock_root/build_artifacts/requests_1673863902341/work\n",
184
+ "requests-oauthlib==1.3.1\n",
185
+ "rfc3339-validator @ file:///home/conda/feedstock_root/build_artifacts/rfc3339-validator_1638811747357/work\n",
186
+ "rfc3986-validator @ file:///home/conda/feedstock_root/build_artifacts/rfc3986-validator_1598024191506/work\n",
187
+ "rich==13.3.3\n",
188
+ "rsa==4.9\n",
189
+ "ruamel.yaml @ file:///home/conda/feedstock_root/build_artifacts/ruamel.yaml_1666827327415/work\n",
190
+ "ruamel.yaml.clib @ file:///home/conda/feedstock_root/build_artifacts/ruamel.yaml.clib_1670412719074/work\n",
191
+ "safetensors==0.3.1\n",
192
+ "scikit-learn==1.2.2\n",
193
+ "scipy==1.10.1\n",
194
+ "seaborn==0.12.2\n",
195
+ "semantic-version==2.10.0\n",
196
+ "Send2Trash @ file:///home/conda/feedstock_root/build_artifacts/send2trash_1628511208346/work\n",
197
+ "shap==0.41.0\n",
198
+ "shellingham==1.5.0.post1\n",
199
+ "SimpleITK==2.2.1\n",
200
+ "six @ file:///home/conda/feedstock_root/build_artifacts/six_1620240208055/work\n",
201
+ "sklearn==0.0.post1\n",
202
+ "slicer==0.0.7\n",
203
+ "smmap==5.0.0\n",
204
+ "sniffio @ file:///home/conda/feedstock_root/build_artifacts/sniffio_1662051266223/work\n",
205
+ "soupsieve @ file:///home/conda/feedstock_root/build_artifacts/soupsieve_1658207591808/work\n",
206
+ "stack-data==0.6.2\n",
207
+ "starlette==0.27.0\n",
208
+ "statsmodels==0.14.0\n",
209
+ "streamlit==1.23.1\n",
210
+ "streamlit-nightly==1.23.2.dev20230607\n",
211
+ "sympy==1.11.1\n",
212
+ "tabulate==0.9.0\n",
213
+ "tenacity==8.2.2\n",
214
+ "tensorboard==2.12.3\n",
215
+ "tensorboard-data-server==0.7.0\n",
216
+ "tensorflow==2.12.0\n",
217
+ "tensorflow-estimator==2.12.0\n",
218
+ "tensorflow-io-gcs-filesystem==0.32.0\n",
219
+ "termcolor==2.3.0\n",
220
+ "terminado @ file:///home/conda/feedstock_root/build_artifacts/terminado_1670253674810/work\n",
221
+ "threadpoolctl==3.1.0\n",
222
+ "tinycss2 @ file:///home/conda/feedstock_root/build_artifacts/tinycss2_1666100256010/work\n",
223
+ "tokenizers==0.13.3\n",
224
+ "toml==0.10.2\n",
225
+ "tomli @ file:///home/conda/feedstock_root/build_artifacts/tomli_1644342247877/work\n",
226
+ "toolz @ file:///home/conda/feedstock_root/build_artifacts/toolz_1657485559105/work\n",
227
+ "torch==2.0.1+cu118\n",
228
+ "torchaudio==2.0.2+cu118\n",
229
+ "torchio==0.18.91\n",
230
+ "torchmetrics==0.11.4\n",
231
+ "torchutils==0.0.4\n",
232
+ "torchvision==0.15.2+cu118\n",
233
+ "tornado==6.2\n",
234
+ "tqdm @ file:///home/conda/feedstock_root/build_artifacts/tqdm_1662214488106/work\n",
235
+ "traitlets==5.9.0\n",
236
+ "transformers==4.30.0\n",
237
+ "translit==0.2a1\n",
238
+ "triton==2.0.0\n",
239
+ "typer==0.9.0\n",
240
+ "typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1678559861143/work\n",
241
+ "tzdata==2023.3\n",
242
+ "tzlocal==4.3\n",
243
+ "uc-micro-py==1.0.2\n",
244
+ "urllib3 @ file:///home/conda/feedstock_root/build_artifacts/urllib3_1673452138552/work\n",
245
+ "uvicorn==0.22.0\n",
246
+ "validators==0.20.0\n",
247
+ "watchdog==3.0.0\n",
248
+ "wcwidth==0.2.6\n",
249
+ "webencodings==0.5.1\n",
250
+ "websocket-client @ file:///home/conda/feedstock_root/build_artifacts/websocket-client_1675567828044/work\n",
251
+ "websockets==11.0.3\n",
252
+ "Werkzeug==2.3.4\n",
253
+ "wrapt==1.14.1\n",
254
+ "xlrd==2.0.1\n",
255
+ "yarl==1.8.2\n",
256
+ "yellowbrick==1.5\n",
257
+ "yfinance==0.2.17\n",
258
+ "zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1677313463193/work\n",
259
+ "zstandard==0.19.0\n",
260
+ "Note: you may need to restart the kernel to use updated packages.\n"
261
+ ]
262
+ }
263
+ ],
264
+ "source": [
265
+ "pip freeze"
266
+ ]
267
+ },
268
+ {
269
+ "cell_type": "code",
270
+ "execution_count": 3,
271
+ "id": "fba03be3-8dd0-48d4-898c-a7eb2fd5c292",
272
+ "metadata": {},
273
+ "outputs": [],
274
+ "source": [
275
+ "import torch"
276
+ ]
277
+ },
278
+ {
279
+ "cell_type": "code",
280
+ "execution_count": 4,
281
+ "id": "fe9c5e5e-2bc8-4585-93e1-4b777ddeb7c4",
282
+ "metadata": {},
283
+ "outputs": [
284
+ {
285
+ "data": {
286
+ "text/plain": [
287
+ "'2.0.1+cu118'"
288
+ ]
289
+ },
290
+ "execution_count": 4,
291
+ "metadata": {},
292
+ "output_type": "execute_result"
293
+ }
294
+ ],
295
+ "source": [
296
+ "torch.__version__"
297
+ ]
298
+ },
299
+ {
300
+ "cell_type": "code",
301
+ "execution_count": 1,
302
+ "id": "ce5f014d-d484-43a6-ad7f-9e0ba8ba46af",
303
+ "metadata": {},
304
+ "outputs": [
305
+ {
306
+ "name": "stdout",
307
+ "output_type": "stream",
308
+ "text": [
309
+ "Collecting transformers\n",
310
+ " Downloading transformers-4.30.0-py3-none-any.whl (7.2 MB)\n",
311
+ "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.2/7.2 MB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m[36m0:00:01\u001b[0m0m\n",
312
+ "\u001b[?25hRequirement already satisfied: filelock in /home/maria/miniforge3/lib/python3.10/site-packages (from transformers) (3.9.0)\n",
313
+ "Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /home/maria/miniforge3/lib/python3.10/site-packages (from transformers) (0.14.1)\n",
314
+ "Requirement already satisfied: numpy>=1.17 in /home/maria/miniforge3/lib/python3.10/site-packages (from transformers) (1.23.5)\n",
315
+ "Requirement already satisfied: packaging>=20.0 in /home/maria/.local/lib/python3.10/site-packages (from transformers) (23.0)\n",
316
+ "Requirement already satisfied: pyyaml>=5.1 in /home/maria/miniforge3/lib/python3.10/site-packages (from transformers) (6.0)\n",
317
+ "Requirement already satisfied: regex!=2019.12.17 in /home/maria/miniforge3/lib/python3.10/site-packages (from transformers) (2023.5.5)\n",
318
+ "Requirement already satisfied: requests in /home/maria/miniforge3/lib/python3.10/site-packages (from transformers) (2.28.2)\n",
319
+ "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers)\n",
320
+ " Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n",
321
+ "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m[36m0:00:01\u001b[0m\n",
322
+ "\u001b[?25hCollecting safetensors>=0.3.1 (from transformers)\n",
323
+ " Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
324
+ "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m0:01\u001b[0m:01\u001b[0mm\n",
325
+ "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /home/maria/miniforge3/lib/python3.10/site-packages (from transformers) (4.64.1)\n",
326
+ "Requirement already satisfied: fsspec in /home/maria/miniforge3/lib/python3.10/site-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (2023.5.0)\n",
327
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/maria/miniforge3/lib/python3.10/site-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.5.0)\n",
328
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /home/maria/miniforge3/lib/python3.10/site-packages (from requests->transformers) (2.1.1)\n",
329
+ "Requirement already satisfied: idna<4,>=2.5 in /home/maria/miniforge3/lib/python3.10/site-packages (from requests->transformers) (3.4)\n",
330
+ "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/maria/miniforge3/lib/python3.10/site-packages (from requests->transformers) (1.26.14)\n",
331
+ "Requirement already satisfied: certifi>=2017.4.17 in /home/maria/miniforge3/lib/python3.10/site-packages (from requests->transformers) (2022.12.7)\n",
332
+ "Installing collected packages: tokenizers, safetensors, transformers\n",
333
+ "Successfully installed safetensors-0.3.1 tokenizers-0.13.3 transformers-4.30.0\n"
334
+ ]
335
+ }
336
+ ],
337
+ "source": [
338
+ "!pip install transformers"
339
+ ]
340
+ },
341
+ {
342
+ "cell_type": "code",
343
+ "execution_count": null,
344
+ "id": "fc355448-1c49-4bda-8196-caec91650f40",
345
+ "metadata": {},
346
+ "outputs": [],
347
+ "source": []
348
+ }
349
+ ],
350
+ "metadata": {
351
+ "kernelspec": {
352
+ "display_name": "Python 3 (ipykernel)",
353
+ "language": "python",
354
+ "name": "python3"
355
+ },
356
+ "language_info": {
357
+ "codemirror_mode": {
358
+ "name": "ipython",
359
+ "version": 3
360
+ },
361
+ "file_extension": ".py",
362
+ "mimetype": "text/x-python",
363
+ "name": "python",
364
+ "nbconvert_exporter": "python",
365
+ "pygments_lexer": "ipython3",
366
+ "version": "3.10.9"
367
+ }
368
+ },
369
+ "nbformat": 4,
370
+ "nbformat_minor": 5
371
+ }
pages/✨BERT.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import base64
3
+ import streamlit as st
4
+ import plotly.express as px
5
+
6
+ df = px.data.iris()
7
+
8
+ @st.cache_data
9
+ def get_img_as_base64(file):
10
+ with open(file, "rb") as f:
11
+ data = f.read()
12
+ return base64.b64encode(data).decode()
13
+
14
+
15
+ page_bg_img = f"""
16
+ <style>
17
+ [data-testid="stAppViewContainer"] > .main {{
18
+ background-image: url("https://i.ibb.co/kH8bcr4/1368432.jpg");
19
+ background-size: 115%;
20
+ background-position: top left;
21
+ background-repeat: no-repeat;
22
+ background-attachment: local;
23
+ }}
24
+
25
+ [data-testid="stSidebar"] > div:first-child {{
26
+ background-image: url("https://ibb.co/ZBkdJRg");
27
+ background-size: 115%;
28
+ background-position: center;
29
+ background-repeat: no-repeat;
30
+ background-attachment: fixed;
31
+ }}
32
+
33
+ [data-testid="stHeader"] {{
34
+ background: rgba(0,0,0,0);
35
+ }}
36
+
37
+ [data-testid="stToolbar"] {{
38
+ right: 2rem;
39
+ }}
40
+
41
+ div.css-1n76uvr.e1tzin5v0 {{
42
+ background-color: rgba(238, 238, 238, 0.5);
43
+ border: 10px solid #EEEEEE;
44
+ padding: 5% 5% 5% 10%;
45
+ border-radius: 5px;
46
+ }}
47
+
48
+ </style>
49
+ """
50
+ st.markdown(page_bg_img, unsafe_allow_html=True)
51
+
52
+ import tensorflow as tf
53
+ from tensorflow import keras
54
+ import numpy as np
55
+ import matplotlib.pyplot as plt
56
+
57
+ ################################################################################################
58
+ import torch
59
+ import numpy as np
60
+ import transformers
61
+ import pickle
62
+ from sklearn.linear_model import LogisticRegression
63
+
64
+ #def load_model():
65
+ model = transformers.DistilBertModel.from_pretrained(
66
+ "distilbert-base-uncased",
67
+ output_attentions = False,
68
+ output_hidden_states = False
69
+ )
70
+ #model.load_state_dict(torch.load('model/modelbert.pt', map_location=torch.device('cpu')))
71
+ tokenizer = transformers.DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
72
+ #return model_finetuned, tokenizer
73
+
74
+ def preprocess_text(text_input, max_len, tokenizer):
75
+ input_tokens = tokenizer(
76
+ text_input,
77
+ return_tensors='pt',
78
+ padding=True,
79
+ max_length=max_len,
80
+ truncation = True
81
+ )
82
+ return input_tokens
83
+
84
+ def predict_sentiment(model, input_tokens):
85
+ #st.write(input_tokens)
86
+ ans = {0: "NEGATIVE", 1: "POSITIVE"}
87
+ last_hidden_states = model(**input_tokens)
88
+ #st.write('last_hidden_states ok')
89
+ vectors = last_hidden_states[0][:,0,:].detach().cpu().numpy()
90
+ #st.write('vectors ok')
91
+ #output = model(**input_tokens).last_hidden_states.detach().numpy()
92
+ with open('model/modelbert1.pkl', 'rb') as file:
93
+ cls = pickle.load(file)
94
+ result = ans[cls.predict(vectors)[0]]
95
+ return result
96
+
97
+ col1, col2, col3 = st.columns([1,5,1])
98
+ with col2:
99
+
100
+ st.title('Text sentiment analysis')
101
+
102
+ col1, col2, col3 = st.columns([2,5,2])
103
+ with col2:
104
+
105
+ max_len = st.slider('Maximum word length', 0, 500, 250)
106
+
107
+ text_input = st.text_input("Enter some text")
108
+ #model, tokenizer = load_model()
109
+
110
+ if text_input:
111
+ input_tokens = preprocess_text(text_input, max_len, tokenizer)
112
+ output = predict_sentiment(model, input_tokens)
113
+ st.write(output)
114
+
115
+
116
+
117
+ ################################################################################################
118
+ #st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True)
119
+ #st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True)
pages/✨first.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import base64
3
+ import streamlit as st
4
+ import plotly.express as px
5
+
6
+ df = px.data.iris()
7
+
8
+ @st.cache_data
9
+ def get_img_as_base64(file):
10
+ with open(file, "rb") as f:
11
+ data = f.read()
12
+ return base64.b64encode(data).decode()
13
+
14
+
15
+ page_bg_img = f"""
16
+ <style>
17
+ [data-testid="stAppViewContainer"] > .main {{
18
+ background-image: url("https://wallpapercave.com/wp/wp6480460.jpg");
19
+ background-size: 115%;
20
+ background-position: top left;
21
+ background-repeat: no-repeat;
22
+ background-attachment: local;
23
+ }}
24
+
25
+ [data-testid="stSidebar"] > div:first-child {{
26
+ background-image: url("https://ibb.co/ZBkdJRg");
27
+ background-size: 115%;
28
+ background-position: center;
29
+ background-repeat: no-repeat;
30
+ background-attachment: fixed;
31
+ }}
32
+
33
+ [data-testid="stHeader"] {{
34
+ background: rgba(0,0,0,0);
35
+ }}
36
+
37
+ [data-testid="stToolbar"] {{
38
+ right: 2rem;
39
+ }}
40
+
41
+ div.css-1n76uvr.e1tzin5v0 {{
42
+ background-color: rgba(238, 238, 238, 0.5);
43
+ border: 10px solid #EEEEEE;
44
+ padding: 5% 5% 5% 10%;
45
+ border-radius: 5px;
46
+ }}
47
+
48
+
49
+ </style>
50
+ """
51
+ st.markdown(page_bg_img, unsafe_allow_html=True)
52
+
53
+ import tensorflow as tf
54
+ from tensorflow import keras
55
+ import numpy as np
56
+ import matplotlib.pyplot as plt
57
+
58
+ ################################################################################################
59
+ #Тут нужно будет добаить модель. Ниже пример:
60
+
61
+ # # Загрузка модели
62
+ # model = keras.models.load_model('cgan_model.h5')
63
+
64
+ # # Задание размерностей входных данных модели
65
+ # latent_dim = 128
66
+ # num_classes = 10
67
+
68
+ # # Функция для генерации изображения
69
+ # def generate_image(number):
70
+ # random_latent_vector = tf.random.normal(shape=(1, latent_dim))
71
+ # one_hot_label = tf.one_hot([number], num_classes)
72
+ # input_data = tf.concat([random_latent_vector, one_hot_label], axis=1)
73
+
74
+ # generated_image = model.predict(input_data)
75
+ # generated_image = generated_image.reshape(28, 28)
76
+ # generated_image = tf.image.resize(generated_image[None, ...], (28, 28))[0] # Добавлено [None, ...] для добавления измерения
77
+ # return generated_image
78
+
79
+ ################################################################################################
80
+
81
+ #Оформление
82
+
83
+ col1, col2, col3 = st.columns([1,5,1])
84
+ with col2:
85
+
86
+ st.title('Название модели')
87
+
88
+ col1, col2, col3 = st.columns([2,5,2])
89
+ with col2:
90
+
91
+ number = st.slider('Выберите число:', 0, 9, step=1)
92
+
93
+ # Вставка кода с кнопками
94
+ container = st.container()
95
+
96
+ # Настройка стиля контейнера с помощью CSS
97
+ container.markdown(
98
+ """
99
+ <style>
100
+ .container-style {
101
+ display: flex;
102
+ justify-content: center;
103
+ align-items: center;
104
+ margin-top: 20px;
105
+ margin-bottom: 20px;
106
+ }
107
+ </style>
108
+ """,
109
+ unsafe_allow_html=True
110
+ )
111
+
112
+ # Расположение кнопок внутри контейнера
113
+ with container:
114
+ col1, col2, col3 = st.columns(3)
115
+
116
+ # Кнопки для перехода на другие страницы
117
+ if col1.button('Страница 1'):
118
+ # Действия при нажатии кнопки для перехода на Страницу 1
119
+ st.experimental_set_query_params(page='?page=1')
120
+
121
+ if col2.button('Страница 2'):
122
+ # Действия при нажатии кнопки для перехода на Страницу 2
123
+ st.experimental_set_query_params(page='2')
124
+
125
+ if col3.button('Страница 3'):
126
+ # Действия при нажатии кнопки для перехода на Страницу 3
127
+ st.experimental_set_query_params(page='third.py')
pages/✨third.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import base64
3
+ import streamlit as st
4
+ import plotly.express as px
5
+
6
+ df = px.data.iris()
7
+
8
+ @st.cache_data
9
+ def get_img_as_base64(file):
10
+ with open(file, "rb") as f:
11
+ data = f.read()
12
+ return base64.b64encode(data).decode()
13
+
14
+
15
+ #img = get_img_as_base64("https://catherineasquithgallery.com/uploads/posts/2021-02/1612739741_65-p-goluboi-fon-tsifri-110.jpg")
16
+
17
+ page_bg_img = f"""
18
+ <style>
19
+ [data-testid="stAppViewContainer"] > .main {{
20
+ background-image: url("https://wallpapercave.com/wp/wp11966930.jpg");
21
+ background-size: 115%;
22
+ background-position: top left;
23
+ background-repeat: no-repeat;
24
+ background-attachment: local;
25
+ }}
26
+
27
+ [data-testid="stSidebar"] > div:first-child {{
28
+ background-image: url("https://ibb.co/ZBkdJRg");
29
+ background-size: 115%;
30
+ background-position: center;
31
+ background-repeat: no-repeat;
32
+ background-attachment: fixed;
33
+ }}
34
+
35
+ [data-testid="stHeader"] {{
36
+ background: rgba(0,0,0,0);
37
+ }}
38
+
39
+ [data-testid="stToolbar"] {{
40
+ right: 2rem;
41
+ }}
42
+
43
+ div.css-1n76uvr.e1tzin5v0 {{
44
+ background-color: rgba(238, 238, 238, 0.5);
45
+ border: 10px solid #EEEEEE;
46
+ padding: 5% 5% 5% 10%;
47
+ border-radius: 5px;
48
+ }}
49
+
50
+ </style>
51
+ """
52
+ st.markdown(page_bg_img, unsafe_allow_html=True)
53
+
54
+ import tensorflow as tf
55
+ from tensorflow import keras
56
+ import numpy as np
57
+ import matplotlib.pyplot as plt
58
+
59
+ ################################################################################################
60
+ #Тут нужно будет добаить модель. Ниже пример:
61
+
62
+ # # Загрузка модели
63
+ # model = keras.models.load_model('cgan_model.h5')
64
+
65
+ # # Задание размерностей входных данных модели
66
+ # latent_dim = 128
67
+ # num_classes = 10
68
+
69
+ # # Функция для генерации изображения
70
+ # def generate_image(number):
71
+ # random_latent_vector = tf.random.normal(shape=(1, latent_dim))
72
+ # one_hot_label = tf.one_hot([number], num_classes)
73
+ # input_data = tf.concat([random_latent_vector, one_hot_label], axis=1)
74
+
75
+ # generated_image = model.predict(input_data)
76
+ # generated_image = generated_image.reshape(28, 28)
77
+ # generated_image = tf.image.resize(generated_image[None, ...], (28, 28))[0] # Добавлено [None, ...] для добавления измерения
78
+ # return generated_image
79
+
80
+ ################################################################################################
81
+
82
+ #Оформление
83
+
84
+ col1, col2, col3 = st.columns([1,5,1])
85
+ with col2:
86
+
87
+ st.title('Название модели')
88
+
89
+ col1, col2, col3 = st.columns([2,5,2])
90
+ with col2:
91
+
92
+ number = st.slider('Выберите число:', 0, 9, step=1)
93
+
94
+ ################################################################################################
95
+ # Часть, отображаемая на странице
96
+
97
+ # number = st.slider('Выберите число:', 0, 9, step=1)
98
+
99
+
100
+ # #col1.subheader("Гистограмма total_bill:")
101
+
102
+ # # Генерация и отображение изображения
103
+ # generated_image = generate_image(number)
104
+ # generated_image_np = generated_image.numpy() # Преобразование в массив NumPy
105
+ # fig, ax = plt.subplots()
106
+ # ax.scatter([1, 2], [1, 2], color='black')
107
+ # plt.imshow(generated_image_np, cmap='gray')
108
+ # plt.axis('off')
109
+ # fig.set_size_inches(3, 3)
110
+ # st.pyplot(fig)
111
+
112
+ ################################################################################################
113
+ #st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True)
114
+ #st.markdown("<div style='text-align: center; font-size: 25px;'> ", unsafe_allow_html=True)