loc / model /modules.py
mrfakename's picture
Sync from GitHub repo
d37849f verified
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
from typing import Optional
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from x_transformers.x_transformers import apply_rotary_pos_emb
# raw wav to mel spec
class MelSpec(nn.Module):
def __init__(
self,
filter_length=1024,
hop_length=256,
win_length=1024,
n_mel_channels=100,
target_sample_rate=24_000,
normalize=False,
power=1,
norm=None,
center=True,
):
super().__init__()
self.n_mel_channels = n_mel_channels
self.mel_stft = torchaudio.transforms.MelSpectrogram(
sample_rate=target_sample_rate,
n_fft=filter_length,
win_length=win_length,
hop_length=hop_length,
n_mels=n_mel_channels,
power=power,
center=center,
normalized=normalize,
norm=norm,
)
self.register_buffer("dummy", torch.tensor(0), persistent=False)
def forward(self, inp):
if len(inp.shape) == 3:
inp = inp.squeeze(1) # 'b 1 nw -> b nw'
assert len(inp.shape) == 2
if self.dummy.device != inp.device:
self.to(inp.device)
mel = self.mel_stft(inp)
mel = mel.clamp(min=1e-5).log()
return mel
# sinusoidal position embedding
class SinusPositionEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x, scale=1000):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
# convolutional position embedding
class ConvPositionEmbedding(nn.Module):
def __init__(self, dim, kernel_size=31, groups=16):
super().__init__()
assert kernel_size % 2 != 0
self.conv1d = nn.Sequential(
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
nn.Mish(),
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
nn.Mish(),
)
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
if mask is not None:
mask = mask[..., None]
x = x.masked_fill(~mask, 0.0)
x = x.permute(0, 2, 1)
x = self.conv1d(x)
out = x.permute(0, 2, 1)
if mask is not None:
out = out.masked_fill(~mask, 0.0)
return out
# rotary positional embedding related
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
theta *= theta_rescale_factor ** (dim / (dim - 2))
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return torch.cat([freqs_cos, freqs_sin], dim=-1)
def get_pos_embed_indices(start, length, max_pos, scale=1.0):
# length = length if isinstance(length, int) else length.max()
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
pos = (
start.unsqueeze(1)
+ (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long()
)
# avoid extra long error.
pos = torch.where(pos < max_pos, pos, max_pos - 1)
return pos
# Global Response Normalization layer (Instance Normalization ?)
class GRN(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
class ConvNeXtV2Block(nn.Module):
def __init__(
self,
dim: int,
intermediate_dim: int,
dilation: int = 1,
):
super().__init__()
padding = (dilation * (7 - 1)) // 2
self.dwconv = nn.Conv1d(
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
) # depthwise conv
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.grn = GRN(intermediate_dim)
self.pwconv2 = nn.Linear(intermediate_dim, dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
x = x.transpose(1, 2) # b n d -> b d n
x = self.dwconv(x)
x = x.transpose(1, 2) # b d n -> b n d
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
return residual + x
# AdaLayerNormZero
# return with modulated x for attn input, and params for later mlp modulation
class AdaLayerNormZero(nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(dim, dim * 6)
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb=None):
emb = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
# AdaLayerNormZero for final layer
# return only with modulated x for attn input, cuz no more mlp modulation
class AdaLayerNormZero_Final(nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(dim, dim * 2)
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb):
emb = self.linear(self.silu(emb))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
return x
# FeedForward
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
activation = nn.GELU(approximate=approximate)
project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
def forward(self, x):
return self.ff(x)
# Attention with possible joint part
# modified from diffusers/src/diffusers/models/attention_processor.py
class Attention(nn.Module):
def __init__(
self,
processor: JointAttnProcessor | AttnProcessor,
dim: int,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
context_dim: Optional[int] = None, # if not None -> joint attention
context_pre_only=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.processor = processor
self.dim = dim
self.heads = heads
self.inner_dim = dim_head * heads
self.dropout = dropout
self.context_dim = context_dim
self.context_pre_only = context_pre_only
self.to_q = nn.Linear(dim, self.inner_dim)
self.to_k = nn.Linear(dim, self.inner_dim)
self.to_v = nn.Linear(dim, self.inner_dim)
if self.context_dim is not None:
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
if self.context_pre_only is not None:
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(self.inner_dim, dim))
self.to_out.append(nn.Dropout(dropout))
if self.context_pre_only is not None and not self.context_pre_only:
self.to_out_c = nn.Linear(self.inner_dim, dim)
def forward(
self,
x: float["b n d"], # noised input x # noqa: F722
c: float["b n d"] = None, # context c # noqa: F722
mask: bool["b n"] | None = None, # noqa: F722
rope=None, # rotary position embedding for x
c_rope=None, # rotary position embedding for c
) -> torch.Tensor:
if c is not None:
return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope)
else:
return self.processor(self, x, mask=mask, rope=rope)
# Attention processor
class AttnProcessor:
def __init__(self):
pass
def __call__(
self,
attn: Attention,
x: float["b n d"], # noised input x # noqa: F722
mask: bool["b n"] | None = None, # noqa: F722
rope=None, # rotary position embedding
) -> torch.FloatTensor:
batch_size = x.shape[0]
# `sample` projections.
query = attn.to_q(x)
key = attn.to_k(x)
value = attn.to_v(x)
# apply rotary position embedding
if rope is not None:
freqs, xpos_scale = rope
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
# attention
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# mask. e.g. inference got a batch with different target durations, mask out the padding
if mask is not None:
attn_mask = mask
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
else:
attn_mask = None
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
x = x.to(query.dtype)
# linear proj
x = attn.to_out[0](x)
# dropout
x = attn.to_out[1](x)
if mask is not None:
mask = mask.unsqueeze(-1)
x = x.masked_fill(~mask, 0.0)
return x
# Joint Attention processor for MM-DiT
# modified from diffusers/src/diffusers/models/attention_processor.py
class JointAttnProcessor:
def __init__(self):
pass
def __call__(
self,
attn: Attention,
x: float["b n d"], # noised input x # noqa: F722
c: float["b nt d"] = None, # context c, here text # noqa: F722
mask: bool["b n"] | None = None, # noqa: F722
rope=None, # rotary position embedding for x
c_rope=None, # rotary position embedding for c
) -> torch.FloatTensor:
residual = x
batch_size = c.shape[0]
# `sample` projections.
query = attn.to_q(x)
key = attn.to_k(x)
value = attn.to_v(x)
# `context` projections.
c_query = attn.to_q_c(c)
c_key = attn.to_k_c(c)
c_value = attn.to_v_c(c)
# apply rope for context and noised input independently
if rope is not None:
freqs, xpos_scale = rope
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
if c_rope is not None:
freqs, xpos_scale = c_rope
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
# attention
query = torch.cat([query, c_query], dim=1)
key = torch.cat([key, c_key], dim=1)
value = torch.cat([value, c_value], dim=1)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# mask. e.g. inference got a batch with different target durations, mask out the padding
if mask is not None:
attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text)
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
else:
attn_mask = None
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
x = x.to(query.dtype)
# Split the attention outputs.
x, c = (
x[:, : residual.shape[1]],
x[:, residual.shape[1] :],
)
# linear proj
x = attn.to_out[0](x)
# dropout
x = attn.to_out[1](x)
if not attn.context_pre_only:
c = attn.to_out_c(c)
if mask is not None:
mask = mask.unsqueeze(-1)
x = x.masked_fill(~mask, 0.0)
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
return x, c
# DiT Block
class DiTBlock(nn.Module):
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1):
super().__init__()
self.attn_norm = AdaLayerNormZero(dim)
self.attn = Attention(
processor=AttnProcessor(),
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
)
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
def forward(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding
# pre-norm & modulation for attention input
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
# attention
attn_output = self.attn(x=norm, mask=mask, rope=rope)
# process attention output for input x
x = x + gate_msa.unsqueeze(1) * attn_output
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(norm)
x = x + gate_mlp.unsqueeze(1) * ff_output
return x
# MMDiT Block https://arxiv.org/abs/2403.03206
class MMDiTBlock(nn.Module):
r"""
modified from diffusers/src/diffusers/models/attention.py
notes.
_c: context related. text, cond, etc. (left part in sd3 fig2.b)
_x: noised input related. (right part)
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
"""
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
super().__init__()
self.context_pre_only = context_pre_only
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
self.attn_norm_x = AdaLayerNormZero(dim)
self.attn = Attention(
processor=JointAttnProcessor(),
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
context_dim=dim,
context_pre_only=context_pre_only,
)
if not context_pre_only:
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
else:
self.ff_norm_c = None
self.ff_c = None
self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding
# pre-norm & modulation for attention input
if self.context_pre_only:
norm_c = self.attn_norm_c(c, t)
else:
norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
# attention
x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
# process attention output for context c
if self.context_pre_only:
c = None
else: # if not last layer
c = c + c_gate_msa.unsqueeze(1) * c_attn_output
norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
c_ff_output = self.ff_c(norm_c)
c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
# process attention output for input x
x = x + x_gate_msa.unsqueeze(1) * x_attn_output
norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
x_ff_output = self.ff_x(norm_x)
x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
return c, x
# time step conditioning embedding
class TimestepEmbedding(nn.Module):
def __init__(self, dim, freq_embed_dim=256):
super().__init__()
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
def forward(self, timestep: float["b"]): # noqa: F821
time_hidden = self.time_embed(timestep)
time_hidden = time_hidden.to(timestep.dtype)
time = self.time_mlp(time_hidden) # b d
return time