Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from models.rrdb_denselayer import ResidualDenseBlock_out | |
class INV_block(nn.Module): | |
def __init__(self, channel=2, subnet_constructor=ResidualDenseBlock_out, clamp=2.0): | |
super().__init__() | |
self.clamp = clamp | |
# ρ | |
self.r = subnet_constructor(channel, channel) | |
# η | |
self.y = subnet_constructor(channel, channel) | |
# φ | |
self.f = subnet_constructor(channel, channel) | |
def e(self, s): | |
return torch.exp(self.clamp * 2 * (torch.sigmoid(s) - 0.5)) | |
def forward(self, x1, x2, rev=False): | |
if not rev: | |
t2 = self.f(x2) | |
y1 = x1 + t2 | |
s1, t1 = self.r(y1), self.y(y1) | |
y2 = self.e(s1) * x2 + t1 | |
else: | |
s1, t1 = self.r(x1), self.y(x1) | |
y2 = (x2 - t1) / self.e(s1) | |
t2 = self.f(y2) | |
y1 = (x1 - t2) | |
return y1, y2 | |