M3000j's picture
Upload folder using huggingface_hub
31726e5 verified
import os
import torch as th
import torch.multiprocessing as mp
import threading as mt
import numpy as np
import random
import ttools
import pydiffvg
import time
def render(canvas_width, canvas_height, shapes, shape_groups, samples=2,
seed=None):
if seed is None:
seed = random.randint(0, 1000000)
_render = pydiffvg.RenderFunction.apply
scene_args = pydiffvg.RenderFunction.serialize_scene(
canvas_width, canvas_height, shapes, shape_groups)
img = _render(canvas_width, canvas_height, samples, samples,
seed, # seed
None, # background image
*scene_args)
return img
def opacityStroke2diffvg(strokes, canvas_size=128, debug=False, relative=True,
force_cpu=True):
dev = strokes.device
if force_cpu:
strokes = strokes.to("cpu")
# pydiffvg.set_use_gpu(False)
# if strokes.is_cuda:
# pydiffvg.set_use_gpu(True)
"""Rasterize strokes given in (dx, dy, opacity) sequence format."""
bs, nsegs, dims = strokes.shape
out = []
start = time.time()
for batch_idx, stroke in enumerate(strokes):
if relative: # Absolute coordinates
all_points = stroke[..., :2].cumsum(0)
else:
all_points = stroke[..., :2]
all_opacities = stroke[..., 2]
# Transform from [-1, 1] to canvas coordinates
# Make sure points are in canvas
all_points = 0.5*(all_points + 1.0) * canvas_size
# all_points = th.clamp(0.5*(all_points + 1.0), 0, 1) * canvas_size
# Avoid overlapping points
eps = 1e-4
all_points = all_points + eps*th.randn_like(all_points)
shapes = []
shape_groups = []
for start_idx in range(0, nsegs-1):
points = all_points[start_idx:start_idx+2].contiguous().float()
opacity = all_opacities[start_idx]
num_ctrl_pts = th.zeros(points.shape[0] - 1, dtype=th.int32)
width = th.ones(1)
path = pydiffvg.Path(
num_control_points=num_ctrl_pts, points=points,
stroke_width=width, is_closed=False)
shapes.append(path)
color = th.cat([th.ones(3, device=opacity.device),
opacity.unsqueeze(0)], 0)
path_group = pydiffvg.ShapeGroup(
shape_ids=th.tensor([len(shapes) - 1]),
fill_color=None,
stroke_color=color)
shape_groups.append(path_group)
# Rasterize only if there are shapes
if shapes:
inner_start = time.time()
out.append(render(canvas_size, canvas_size, shapes, shape_groups,
samples=4))
if debug:
inner_elapsed = time.time() - inner_start
print("diffvg call took %.2fms" % inner_elapsed)
else:
out.append(th.zeros(canvas_size, canvas_size, 4,
device=strokes.device))
if debug:
elapsed = (time.time() - start)*1000
print("rendering took %.2fms" % elapsed)
images = th.stack(out, 0).permute(0, 3, 1, 2).contiguous()
# Return data on the same device as input
return images.to(dev)
def stroke2diffvg(strokes, canvas_size=128):
"""Rasterize strokes given some sequential data."""
bs, nsegs, dims = strokes.shape
out = []
for stroke_idx, stroke in enumerate(strokes):
end_of_stroke = stroke[:, 4] == 1
last = end_of_stroke.cpu().numpy().argmax()
stroke = stroke[:last+1, :]
# stroke = stroke[~end_of_stroke]
# TODO: stop at the first end of stroke
# import ipdb; ipdb.set_trace()
split_idx = stroke[:, 3].nonzero().squeeze(1)
# Absolute coordinates
all_points = stroke[..., :2].cumsum(0)
# Transform to canvas coordinates
all_points[..., 0] += 0.5
all_points[..., 0] *= canvas_size
all_points[..., 1] += 0.5
all_points[..., 1] *= canvas_size
# Make sure points are in canvas
all_points[..., :2] = th.clamp(all_points[..., :2], 0, canvas_size)
shape_groups = []
shapes = []
start_idx = 0
for count, end_idx in enumerate(split_idx):
points = all_points[start_idx:end_idx+1].contiguous().float()
if points.shape[0] <= 2: # we need at least 2 points for a line
continue
num_ctrl_pts = th.zeros(points.shape[0] - 1, dtype=th.int32)
width = th.ones(1)
path = pydiffvg.Path(
num_control_points=num_ctrl_pts, points=points,
stroke_width=width, is_closed=False)
start_idx = end_idx+1
shapes.append(path)
color = th.ones(4, 1)
path_group = pydiffvg.ShapeGroup(
shape_ids=th.tensor([len(shapes) - 1]),
fill_color=None,
stroke_color=color)
shape_groups.append(path_group)
# Rasterize
if shapes:
# draw only if there are shapes
out.append(render(canvas_size, canvas_size, shapes, shape_groups, samples=2))
else:
out.append(th.zeros(canvas_size, canvas_size, 4,
device=strokes.device))
return th.stack(out, 0).permute(0, 3, 1, 2)[:, :3].contiguous()
def line_render(all_points, all_widths, all_alphas, force_cpu=True,
canvas_size=32, colors=None):
dev = all_points.device
if force_cpu:
all_points = all_points.to("cpu")
all_widths = all_widths.to("cpu")
all_alphas = all_alphas.to("cpu")
if colors is not None:
colors = colors.to("cpu")
all_points = 0.5*(all_points + 1.0) * canvas_size
eps = 1e-4
all_points = all_points + eps*th.randn_like(all_points)
bs, num_segments, _, _ = all_points.shape
n_out = 3 if colors is not None else 1
output = th.zeros(bs, n_out, canvas_size, canvas_size,
device=all_points.device)
scenes = []
for k in range(bs):
shapes = []
shape_groups = []
for p in range(num_segments):
points = all_points[k, p].contiguous().cpu()
num_ctrl_pts = th.zeros(1, dtype=th.int32)
width = all_widths[k, p].cpu()
alpha = all_alphas[k, p].cpu()
if colors is not None:
color = colors[k, p]
else:
color = th.ones(3, device=alpha.device)
color = th.cat([color, alpha.view(1,)])
path = pydiffvg.Path(
num_control_points=num_ctrl_pts, points=points,
stroke_width=width, is_closed=False)
shapes.append(path)
path_group = pydiffvg.ShapeGroup(
shape_ids=th.tensor([len(shapes) - 1]),
fill_color=None,
stroke_color=color)
shape_groups.append(path_group)
# Rasterize
scenes.append((canvas_size, canvas_size, shapes, shape_groups))
raster = render(canvas_size, canvas_size, shapes, shape_groups,
samples=2)
raster = raster.permute(2, 0, 1).view(4, canvas_size, canvas_size)
alpha = raster[3:4]
if colors is not None: # color output
image = raster[:3]
alpha = alpha.repeat(3, 1, 1)
else:
image = raster[:1]
# alpha compositing
image = image*alpha
output[k] = image
output = output.to(dev)
return output, scenes
def bezier_render(all_points, all_widths, all_alphas, force_cpu=True,
canvas_size=32, colors=None):
dev = all_points.device
if force_cpu:
all_points = all_points.to("cpu")
all_widths = all_widths.to("cpu")
all_alphas = all_alphas.to("cpu")
if colors is not None:
colors = colors.to("cpu")
all_points = 0.5*(all_points + 1.0) * canvas_size
eps = 1e-4
all_points = all_points + eps*th.randn_like(all_points)
bs, num_strokes, num_pts, _ = all_points.shape
num_segments = (num_pts - 1) // 3
n_out = 3 if colors is not None else 1
output = th.zeros(bs, n_out, canvas_size, canvas_size,
device=all_points.device)
scenes = []
for k in range(bs):
shapes = []
shape_groups = []
for p in range(num_strokes):
points = all_points[k, p].contiguous().cpu()
# bezier
num_ctrl_pts = th.zeros(num_segments, dtype=th.int32) + 2
width = all_widths[k, p].cpu()
alpha = all_alphas[k, p].cpu()
if colors is not None:
color = colors[k, p]
else:
color = th.ones(3, device=alpha.device)
color = th.cat([color, alpha.view(1,)])
path = pydiffvg.Path(
num_control_points=num_ctrl_pts, points=points,
stroke_width=width, is_closed=False)
shapes.append(path)
path_group = pydiffvg.ShapeGroup(
shape_ids=th.tensor([len(shapes) - 1]),
fill_color=None,
stroke_color=color)
shape_groups.append(path_group)
# Rasterize
scenes.append((canvas_size, canvas_size, shapes, shape_groups))
raster = render(canvas_size, canvas_size, shapes, shape_groups,
samples=2)
raster = raster.permute(2, 0, 1).view(4, canvas_size, canvas_size)
alpha = raster[3:4]
if colors is not None: # color output
image = raster[:3]
alpha = alpha.repeat(3, 1, 1)
else:
image = raster[:1]
# alpha compositing
image = image*alpha
output[k] = image
output = output.to(dev)
return output, scenes