M17idd commited on
Commit
81bc7cb
·
verified ·
1 Parent(s): eb9cd26

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -568,7 +568,7 @@ def clean_text(text):
568
  from collections import Counter
569
  import heapq
570
 
571
- def summarize_text_by_frequency(text, num_sentences=3):
572
  sentences = text.split('\n')
573
  word_freq = Counter()
574
 
@@ -590,7 +590,7 @@ def summarize_text_by_frequency(text, num_sentences=3):
590
 
591
 
592
 
593
- def find_closest_lines(query, doc_texts, stop_words, top_n=5):
594
  cleaned_query = remove_stop_words(query, stop_words)
595
  query_words = cleaned_query.split()
596
 
@@ -617,14 +617,14 @@ def remove_stop_words_from_lines(lines, stop_words):
617
  return cleaned_lines
618
 
619
  if query:
620
- closest_lines = find_closest_lines(query, doc_texts, stop_words, top_n=5)
621
 
622
  # حذف استپ‌وردها از خطوط و سپس پاکسازی نهایی متن
623
  cleaned_closest_lines = [
624
  clean_text(" ".join([word for word in line.split() if word not in stop_words]))
625
  for line in closest_lines
626
  ]
627
- summarized_text = summarize_text_by_frequency("\n".join(cleaned_closest_lines), num_sentences=3)
628
  summarized_cleaned = " ".join([word for word in summarized_text.split() if word not in stop_words])
629
 
630
  if summarized_text:
 
568
  from collections import Counter
569
  import heapq
570
 
571
+ def summarize_text_by_frequency(text, num_sentences=1):
572
  sentences = text.split('\n')
573
  word_freq = Counter()
574
 
 
590
 
591
 
592
 
593
+ def find_closest_lines(query, doc_texts, stop_words, top_n=15):
594
  cleaned_query = remove_stop_words(query, stop_words)
595
  query_words = cleaned_query.split()
596
 
 
617
  return cleaned_lines
618
 
619
  if query:
620
+ closest_lines = find_closest_lines(query, doc_texts, stop_words, top_n=15)
621
 
622
  # حذف استپ‌وردها از خطوط و سپس پاکسازی نهایی متن
623
  cleaned_closest_lines = [
624
  clean_text(" ".join([word for word in line.split() if word not in stop_words]))
625
  for line in closest_lines
626
  ]
627
+ summarized_text = summarize_text_by_frequency("\n".join(cleaned_closest_lines), num_sentences=1)
628
  summarized_cleaned = " ".join([word for word in summarized_text.split() if word not in stop_words])
629
 
630
  if summarized_text: