army / app.py
M17idd's picture
Update app.py
30f5c61 verified
import streamlit as st
from hazm import Normalizer, SentenceTokenizer
import os
import docx
from langchain.chat_models import ChatOpenAI
from langchain.schema import SystemMessage, HumanMessage
from rapidfuzz import fuzz
import concurrent.futures
import time
# from sentence_transformers import SentenceTransformer
import numpy as np
from hazm import *
import re
import nltk
nltk.download('punkt')
st.markdown("""
<style>
.stAppHeader.st-emotion-cache-12fmjuu.e4hpqof0 {
background-color: rgba(46,59,46, 0.8) !important;
color: #2e3b2e !important;
font-family: 'Vazirmatn', Tahoma, sans-serif !important;
padding: 20px !important;
border-radius: 10px !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.3) !important;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
@font-face {
font-family: 'Roboto';
src: url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;500;700&display=swap') format('woff2');
font-weight: 400;
font-style: normal;
}
html, body, [class*="css"] {
font-family: 'Roboto', Tahoma, sans-serif !important;
font-weight: 400 !important;
direction: rtl;
text-align: right;
ظ color: #ffffff;
}
.stApp {
background: linear-gradient(to left, #4b5e40, #2e3b2e);
color: #ffffff;
}
[data-testid="stSidebar"] {
width: 260px !important;
background-color: #1a2b1e;
border: none !important;
padding-top: 20px;
}
.menu-item {
display: flex;
align-items: center;
gap: 12px;
padding: 12px 20px;
font-size: 16px;
font-weight: 600;
color: #d4d4d4;
cursor: pointer;
transition: background-color 0.3s ease;
}
.menu-item:hover {
background-color: #2e3b2e;
color: #b8860b;
}
.menu-item img {
width: 25px;
height: 25px;
}
.stButton>button {
background-color: #b8860b !important;
color: #1a2b1e !important;
font-family: 'Roboto', Tahoma, sans-serif;
font-weight: 700 !important;
border-radius: 10px;
padding: 12px 24px;
border: none;
transition: all 0.3s ease;
font-size: 16px;
width: 100%;
margin: 10px 0;
}
.stButton>button:hover {
background-color: #8b6508 !important;
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0,0,0,0.3);
}
.header-text {
text-align: center;
margin: 20px 0;
background-color: rgba(26, 43, 30, 0.9);
padding: 25px;
border-radius: 15px;
box-shadow: 0 6px 12px rgba(0,0,0,0.4);
font-family: 'Roboto', Tahoma, sans-serif; /* اضافه شد */
}
.subtitle {
font-size: 18px;
color: #d4d4d4;
font-weight: 600;
margin-top: 10px;
}
.chat-message {
flex-wrap: wrap;
background-color: rgba(26, 43, 30, 0.95);
border: 2px solid #b8860b;
border-radius: 15px;
padding: 20px;
margin: 15px 0;
box-shadow: 0 6px 12px rgba(0,0,0,0.3);
animation: fadeIn 0.6s ease;
font-size: 18px;
color: #d4d4d4;
font-weight: 600;
display: flex;
flex-wrap: wrap;
align-items: center;
gap: 15px;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
.stTextInput>div>input, .stTextArea textarea {
background-color: rgba(26, 43, 30, 0.95) !important;
border-radius: 10px !important;
border: 1px solid #b8860b !important;
padding: 12px !important;
font-family: 'Roboto', Tahoma;
font-weight: 500;
font-size: 16px;
color: #d4d4d4 !important;
}
hr {
border: 1px solid #b8860b;
margin: 15px 0;
}
[data-testid="stSidebar"] > div {
border: none !important;
}
</style>
""", unsafe_allow_html=True)
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
if not st.session_state.authenticated:
st.markdown('<style>.stTextInput > div[data-baseweb="input"] + div, .stTextInput div:has(div[role="alert"]) { display: none !important; }</style>', unsafe_allow_html=True)
st.markdown("""
<style>
input {
background-color: #2e3b2e;
color: gold;
border: 1px solid gold;
border-radius: 10px;
padding: 10px;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
html, body, [class*="css"] {
font-family: 'Vazir', sans-serif;
}
label {
font-size: 20px !important;
color: #ffffff !important;
font-weight: 800 !important;
margin-bottom: 10px !important;
display: block;
}
input[type="text"],
input[type="password"],
input[type="text"]:focus,
input[type="password"]:focus,
input[type="text"]:hover,
input[type="password"]:hover {
background-color: #ffffff !important;
color: #000000 !important;
font-size: 18px !important;
font-family: 'Vazir', sans-serif !important;
}
/* Placeholder style */
::placeholder {
color: #bbbbbb !important;
opacity: 0.8 !important;
font-size: 16px;
}
</style>
""", unsafe_allow_html=True)
username = st.text_input("نام کاربری:", placeholder="شناسه خود را وارد کنید",
label_visibility="visible")
password = st.text_input("رمز عبور:", placeholder="رمز عبور ", type="password",
label_visibility="visible")
st.markdown("""
<style>
div.stButton > button {
background-image: url("https://upload.wikimedia.org/wikipedia/commons/5/59/US_Army_Universal_Camouflage_Pattern.jpg");
background-size: cover;
background-repeat: no-repeat;
background-position: center;
color: #f5deb3;
font-family: 'Vazir', sans-serif;
font-size: 20px;
font-weight: bold;
padding: 14px 35px;
border: 2px solid #d4af37;
border-radius: 14px;
box-shadow: 0 0 18px rgba(0,0,0,0.6);
transition: all 0.3s ease-in-out;
}
div.stButton > button:hover {
filter: brightness(1.2);
box-shadow: 0 0 22px #b8860b;
transform: scale(1.03);
}
div.stButton > button:active {
transform: scale(0.97);
box-shadow: 0 0 12px #000;
}
</style>
""", unsafe_allow_html=True)
if st.button("ورود"):
if username == "admin" and password == "123":
st.session_state.authenticated = True
st.rerun()
else:
st.markdown("""
<div style="background-color: rgba(241, 196, 15, 0.6); color: #2e3b2e; padding: 10px; border-radius: 10px; border: 2px solid #2e3b2e; margin-top: 20px; text-align: center; backdrop-filter: blur(5px);">
نام کاربری یا رمز عبور اشتباه است.
</div>
""", unsafe_allow_html=True)
st.stop()
with st.sidebar:
st.image("log.png", use_container_width=True)
menu_items = [
("گزارش عملیاتی", "https://cdn-icons-png.flaticon.com/512/3596/3596165.png", "https://m17idd-reporting.hf.space"),
("تاریخچه ماموریت‌ها", "https://cdn-icons-png.flaticon.com/512/709/709496.png", None),
("تحلیل داده‌های نظامی", "https://cdn-icons-png.flaticon.com/512/1828/1828932.png", "https://m17idd-test.hf.space"),
("مدیریت منابع", "https://cdn-icons-png.flaticon.com/512/681/681494.png", None),
("دستیار فرماندهی", "https://cdn-icons-png.flaticon.com/512/3601/3601646.png", None),
("تنظیمات امنیتی", "https://cdn-icons-png.flaticon.com/512/2099/2099058.png", None),
("پشتیبانی فنی", "https://cdn-icons-png.flaticon.com/512/597/597177.png", None),
]
st.markdown("""
<link href="https://cdn.jsdelivr.net/gh/rastikerdar/vazir-font@v30.1.0/dist/font-face.css" rel="stylesheet" type="text/css" />
""", unsafe_allow_html=True)
for idx, (text, icon, link) in enumerate(menu_items):
content = f"""
<div class="menu-item" style="display: flex; align-items: center; margin-bottom: 10px;">
<img src="{icon}" width="20" height="20" style="margin-left: 10px;" />
<span style="color: white; font-family: 'Vazir', sans-serif; font-weight: bold;">{text}</span>
</div>
"""
if link:
content = f'<a href="{link}" target="_blank" style="text-decoration: none;">{content}</a>'
st.markdown(content, unsafe_allow_html=True)
if idx in [1, 3, 5]:
st.markdown("<hr style='border-top: 1px solid #555;'/>", unsafe_allow_html=True)
st.markdown("""
<style>
.header-text {
text-align: center;
margin: 50px 0;
background: #2e3b2e;
padding: 60px 30px;
border-radius: 25px;
box-shadow: 0 12px 24px rgba(0, 0, 0, 0.8);
animation: slideIn 2s ease-in-out, fadeIn 3s ease-in-out;
background-size: cover;
background-position: center;
position: relative;
}
@keyframes fadeIn {
0% { opacity: 0; transform: translateY(30px); }
100% { opacity: 1; transform: translateY(0); }
}
@keyframes slideIn {
0% { transform: translateX(-50%); opacity: 0; }
100% { transform: translateX(0); opacity: 1; }
}
.header-text h1 {
font-family: 'Vazir', sans-serif;
font-size: 62px;
color: #d89b00;
margin: 0;
font-weight: 900;
letter-spacing: 4px;
text-shadow: 4px 4px 15px rgba(0, 0, 0, 0.9);
transform: scale(1.08);
animation: glow 2s ease-in-out infinite alternate;
}
.subtitle {
font-family: 'Vazir', sans-serif;
font-size: 24px;
color: #f8f8f8;
font-weight: 700;
margin-top: 15px;
letter-spacing: 2px;
text-shadow: 3px 3px 10px rgba(0,0,0,0.8);
animation: fadeInSubtitle 2s ease-in-out;
}
@keyframes fadeInSubtitle {
0% { opacity: 0; transform: translateY(20px); }
100% { opacity: 1; transform: translateY(0); }
}
.stButton>button {
background-color: #e67e22 !important;
color: #4b5320 !important;
font-family: 'Vazir', sans-serif;
font-weight: 700 !important;
border-radius: 20px;
padding: 15px 30px;
border: none;
transition: all 0.3s ease;
font-size: 18px;
width: 100%;
margin: 20px 0;
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5);
}
.stButton>button:hover {
background-color: #f39c12 !important;
transform: translateY(-4px);
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.6);
}
.stApp {
background: #2e3b2e;
color: white;
font-family: 'Vazir', sans-serif;
}
</style>
<div class="header-text">
<h1>رزم‌‌یار‌ ارتش</h1>
<div class="subtitle">دستیارهوشمند ارتش جمهوری اسلامی ایران</div>
</div>
""", unsafe_allow_html=True)
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='333ac33f5be91819cb7ade101134d73f5e63d299a964ae290850eeac5d82a8d5',
model="deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
)
# from transformers import pipeline
# hf_api_key = os.getenv("tavana55")
# model_name = "Qwen/Qwen3-0.6B"
# llm = pipeline("text-generation", model=model_name)
st.markdown("""
<style>
.st-emotion-cache-128upt6.eht7o1d3 {
background-color: rgba(46,59,46, 0.8) !important;
border-radius: 10px !important;
color: #d4d4d4 !important;
font-family: 'Vazirmatn', Tahoma, sans-serif !important;
padding: 15px !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.3) !important;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
.st-af.st-ah.st-bb.st-ar.st-as.st-ax.st-ay.st-az.st-b0.st-b1.st-b2.st-bc.st-b7 {
background-color: #3a5338 !important;
color: #d4d4d4 !important;
border: 1px solid #c8a200 !important;
border-radius: 10px;
padding: 15px;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
.st-emotion-cache-yd4u6l.e1togvvn1 {
background-color: rgba(106, 127, 83, 0.8) !important;
border-radius: 10px !important;
color: #d4d4d4 !important;
font-family: 'Vazirmatn', Tahoma, sans-serif !important;
padding: 15px !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.3) !important;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
.stAppHeader.st-emotion-cache-12fmjuu.e4hpqof0 {
background-color: rgba(42, 55, 39, 0.9) !important;
color: #d4d4d4 !important;
font-family: 'Vazirmatn', Tahoma, sans-serif !important;
padding: 20px !important;
border-radius: 10px !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.3) !important;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
textarea::placeholder {
color: #ffffff !important;
opacity: 1 !important;
}
textarea {
color: #ffffff !important;
border-radius: 10px !important;
padding: 10px !important;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
.thinking-message {
display: flex;
align-items: center;
font-size: 18px;
color: #ffffff;
}
.thinking-message p {
margin-right: 10px;
}
.spinner {
border: 4px solid #f3f3f3;
border-top: 4px solid #4b6d3d;
border-radius: 50%;
width: 20px;
height: 20px;
animation: spin 2s linear infinite;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
""", unsafe_allow_html=True)
import os
import re
import docx
import streamlit as st
import concurrent.futures
from hazm import Normalizer
from rapidfuzz import fuzz
from langchain.schema import SystemMessage, HumanMessage
from langchain.chat_models import ChatOpenAI
folder_path = '46'
normalizer = Normalizer()
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
@st.cache_data(show_spinner="در حال بارگذاری اسناد...")
def load_and_process_documents(path):
def process_docx(filename):
try:
full_path = os.path.join(path, filename)
doc = docx.Document(full_path)
text = "\n".join([para.text for para in doc.paragraphs])
normalized = normalizer.normalize(text)
return filename, normalized
except Exception as e:
return filename, ""
filenames = [f for f in os.listdir(path) if f.endswith(".docx")]
doc_texts = {}
with concurrent.futures.ThreadPoolExecutor() as executor:
for filename, content in executor.map(process_docx, filenames):
doc_texts[filename] = content
return doc_texts
doc_texts = load_and_process_documents(folder_path)
stop_words = [
"است", "و", "با", "که", "در", "از", "برای", "به", "بر", "تا", "این", "آن", "یک", "کدام", "کجا", "هم", "همه",
"یا", "همچنین", "می", "باید", "شود", "شد", "گفت", "گویا", "داشت", "داشتن", "کنند", "کنیم",
"کرد", "کردن", "نیز", "اگر", "ای", "اینکه", "نه", "باشید", "باشم", "باشی", "در حالی که", "مگر", "چرا",
]
def remove_stop_words(text, stop_words):
words = text.split()
return " ".join([word for word in words if word not in stop_words])
def extract_keywords_from_text(text, query_words):
matched_lines = []
lines = text.split("\n")
for line in lines:
if any(query_word in line for query_word in query_words):
matched_lines.append(line)
return matched_lines
def clean_text(text):
return re.sub(r'[^آ-ی۰-۹0-9،.؟!؛+\-* ]+', '', text)
def find_closest_lines(query, doc_texts, stop_words, top_n=10):
cleaned_query = remove_stop_words(query, stop_words)
query_words = cleaned_query.split()
all_matched_lines = []
for filename, text in doc_texts.items():
matched_lines = extract_keywords_from_text(text, query_words)
for line in matched_lines:
similarity = fuzz.partial_ratio(query, line)
all_matched_lines.append((line, similarity))
all_matched_lines.sort(key=lambda x: x[1], reverse=True)
return [line for line, _ in all_matched_lines[:top_n]]
def remove_stop_words_from_lines(lines, stop_words):
cleaned_lines = []
for line in lines:
words = line.split()
cleaned_words = [word for word in words if word not in stop_words]
cleaned_lines.append(" ".join(cleaned_words))
return cleaned_lines
query = st.chat_input("چطور می‌تونم کمک کنم؟")
if query:
thinking = st.empty()
thinking.markdown("""
<div style="background-color:#0d4d31;padding:10px;border-radius:10px;">
⏳ در حال فکر کردن...
</div>
""", unsafe_allow_html=True)
closest_lines = find_closest_lines(query, doc_texts, stop_words, top_n=2)
cleaned_closest_lines = remove_stop_words_from_lines(closest_lines, stop_words)
if cleaned_closest_lines:
prompt = f"""
به سؤال زیر فقط بر اساس اطلاعات موجود در خطوط مرتبط پاسخ بده.
از تحلیل، مقدمه‌چینی، توضیح مراحل تفکر، یا حدس شخصی خودداری کن.
اگر اطلاعات کافی برای پاسخ دقیق در خطوط مرتبط وجود نداشت، فقط در آن صورت با صراحت اعلام کن،
و سپس می‌توانی از دانش عمومی خود استفاده کنی تا یک پاسخ حرفه‌ای و دقیق ارائه دهی.
پاسخ باید نهایی، روان، و در حدود 512 تا 2048 کاراکتر باشد.
مستقیماً پاسخ را بنویس و هیچ توضیحی درباره نحوه رسیدن به پاسخ نده.
سوال:
{query}
خطوط مرتبط:
{cleaned_closest_lines}
پاسخ نهایی:
"""
response = llm([
SystemMessage(
content="تو یک دستیار دقیق و مختصر هستی. همیشه پاسخ را مستقیماً بدون نشان دادن مراحل فکر یا تحلیل ارائه بده. اگر اطلاعات مرتبط در متن داده شده وجود داشت، فقط از همان استفاده کن. اگر هیچ اطلاعاتی نبود، می‌توانی از دانش عمومی خودت و متن استفاده کنی، ولی صریح اعلام کن که اطلاعاتی در متن نبود."
),
HumanMessage(content=prompt)
])
final_answer = clean_text(response.content.strip())
else:
final_answer = "❗ هیچ خط مرتبطی با سؤال پیدا نشد."
thinking.empty()
st.session_state.chat_history.append(("🧑", query))
st.session_state.chat_history.append(("🤖", final_answer))
st.markdown("""
<style>
@import url('https://cdn.fontcdn.ir/Font/Persian/Vazir/Vazir.css');
div.chat-message {
font-family: 'Vazir', sans-serif;
font-size: 16px;
color: white;
background-color: #0d4d31;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
}
</style>
""", unsafe_allow_html=True)
st.markdown("---")
for sender, message in st.session_state.chat_history:
st.markdown(f'<div class="chat-message"><strong>{sender}</strong>: {message}</div>', unsafe_allow_html=True)