Concrete / app.py
Lydienne's picture
Create app.py
db568c9 verified
import streamlit as st
import pandas as pd
import plotly.express as px
import pickle
# Charger le jeu de données initial
data = pd.read_csv('concrete.csv')
# Créer un dictionnaire de correspondance entre les noms de colonnes et les noms de variables
column_name_mapping = {
'cement': 'cement',
'slag': 'slag',
'ash': 'ash',
'water': 'water',
'superplastic': 'superplastic',
'fineagg': 'fineagg',
'age': 'age'
}
# Charger le modèle de régression enregistré avec pickle
with open('best_model.pkl', 'rb') as f:
best_model = pickle.load(f)
# Configuration de la mise en page
st.set_page_config(layout='wide', initial_sidebar_state='expanded')
# Définir le style CSS
with open('style.css') as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# Barre latérale avec les paramètres de visualisation et de prédiction
with st.sidebar:
st.title('Concrete Data APP')
st.image('concrete.jpg')
st.subheader('Heat map parameter')
cement_value = st.selectbox('Age', data['age'].unique())
st.subheader('Donut chart parameter')
slag_value = st.selectbox('Select data', data['slag'].unique())
st.subheader('Line chart parameters')
plot_data = st.multiselect('Select data', ['cement', 'slag', 'ash'], ['cement', 'slag', 'ash'])
plot_height = st.slider('Specify plot height', 200, 500, 250)
st.subheader('Prediction')
do_prediction = st.checkbox('Perform prediction')
st.subheader('Upload Dataset')
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
try:
data = pd.read_csv(uploaded_file)
except pd.errors.EmptyDataError:
st.error("Error: The uploaded CSV file is empty or could not be read.")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
# Row A
st.markdown('### Metrics')
col1, col2, col3 = st.columns(3)
# Nombre d'échantillons
num_samples = 905
col1.metric("Number of Samples", 905)
# strength moyen
average_strength = data['superplastic'].mean()
col2.metric("Average superplastic", f"{average_strength:.2f}")
# cement moyen
average_cement = data['cement'].mean()
col3.metric("Average Cement", f"{average_cement:.2f}")
# Row B
st.markdown('### Donut chart')
top_10_ash = data['ash'].value_counts().head(10).index.tolist()
top_10_data = data[data['ash'].isin(top_10_ash)]
donut_fig = px.pie(top_10_data, names='ash', hole=0.5)
st.plotly_chart(donut_fig, use_container_width=True)
# Row C
st.markdown('### Line chart')
st.line_chart(data[plot_data], height=plot_height)
# Prediction Section
if do_prediction:
st.markdown('### Predicted strength')
cement = st.number_input('Cement', min_value=100.0, max_value=600.0, value=300.0, step=1.0, key='cement')
slag = st.number_input('Slag', min_value=0.0, max_value=300.0, value=100.0, step=1.0, key='slag')
ash = st.number_input('ash', min_value=0.0, max_value=200.0, value=50.0, step=1.0, key='ash')
water = st.number_input('Water', min_value=100.0, max_value=300.0, value=200.0, step=1.0, key='water')
superplastic = st.number_input('Superplastic', min_value=0.0, max_value=20.0, value=5.0, step=0.1, key='superplastic')
coarseagg = st.number_input('Coarse Aggregate', min_value=600.0, max_value=1200.0, value=1000.0, step=1.0, key='coarseagg')
fineagg = st.number_input('Fine Aggregate', min_value=500.0, max_value=1000.0, value=600.0, step=1.0, key='fineagg')
age = st.number_input('Age', min_value=1, max_value=365, value=28, step=1, key='age')
input_data = pd.DataFrame({
'cement': [cement],
'slag': [slag],
'ash': [ash],
'water': [water],
'superplastic': [superplastic],
'coarseagg': [coarseagg],
'fineagg': [fineagg],
'age': [age]
})
if st.button('Predict'):
predicted_strength = best_model.predict(input_data)
st.write(f'Predicted strength: {predicted_strength[0]:.2f}')