VITS-TTS-Japanese-Only-Amitaro / finetune_speaker_v2.py
Lycoris53's picture
initial commit
029074a
import os
import json
import argparse
import itertools
import math
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
import librosa
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
import commons
import utils
from data_utils import (
TextAudioSpeakerLoader,
TextAudioSpeakerCollate,
DistributedBucketSampler
)
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
)
from losses import (
generator_loss,
discriminator_loss,
feature_loss,
kl_loss
)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
torch.backends.cudnn.benchmark = True
global_step = 0
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '8000'
hps = utils.get_hparams()
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
def run(rank, n_gpus, hps):
global global_step
symbols = hps['symbols']
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
# Use gloo backend on Windows for Pytorch
dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data, symbols)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[32,300,400,500,600,700,800,900,1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(train_dataset, num_workers=2, shuffle=False, pin_memory=True,
collate_fn=collate_fn, batch_sampler=train_sampler)
# train_loader = DataLoader(train_dataset, batch_size=hps.train.batch_size, num_workers=2, shuffle=False, pin_memory=True,
# collate_fn=collate_fn)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, symbols)
eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
batch_size=hps.train.batch_size, pin_memory=True,
drop_last=False, collate_fn=collate_fn)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
# load existing model
if hps.cont:
try:
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_latest.pth"), net_g, None)
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_latest.pth"), net_d, None)
global_step = (epoch_str - 1) * len(train_loader)
except:
print("Failed to find latest checkpoint, loading G_0.pth...")
if hps.train_with_pretrained_model:
print("Train with pretrained model...")
_, _, _, epoch_str = utils.load_checkpoint("./pretrained_models/G_0.pth", net_g, None)
_, _, _, epoch_str = utils.load_checkpoint("./pretrained_models/D_0.pth", net_d, None)
else:
print("Train without pretrained model...")
epoch_str = 1
global_step = 0
else:
if hps.train_with_pretrained_model:
print("Train with pretrained model...")
_, _, _, epoch_str = utils.load_checkpoint("./pretrained_models/G_0.pth", net_g, None)
_, _, _, epoch_str = utils.load_checkpoint("./pretrained_models/D_0.pth", net_d, None)
else:
print("Train without pretrained model...")
epoch_str = 1
global_step = 0
# freeze all other layers except speaker embedding
for p in net_g.parameters():
p.requires_grad = True
for p in net_d.parameters():
p.requires_grad = True
# for p in net_d.parameters():
# p.requires_grad = False
# net_g.emb_g.weight.requires_grad = True
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
# optim_d = None
net_g = DDP(net_g, device_ids=[rank])
net_d = DDP(net_d, device_ids=[rank])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay)
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank==0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
net_g, net_d = nets
optim_g, optim_d = optims
scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
# train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(tqdm(train_loader)):
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
speakers = speakers.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run):
y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank==0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
"all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict)
if global_step % hps.train.eval_interval == 0:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(net_g, None, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "G_latest.pth".format(global_step)))
utils.save_checkpoint(net_d, None, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "D_latest.pth".format(global_step)))
if hps.preserved > 0:
utils.save_checkpoint(net_g, None, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
utils.save_checkpoint(net_d, None, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
old_g = utils.oldest_checkpoint_path(hps.model_dir, "G_[0-9]*.pth",
preserved=hps.preserved) # Preserve 4 (default) historical checkpoints.
old_d = utils.oldest_checkpoint_path(hps.model_dir, "D_[0-9]*.pth", preserved=hps.preserved)
if os.path.exists(old_g):
print(f"remove {old_g}")
os.remove(old_g)
if os.path.exists(old_d):
print(f"remove {old_d}")
os.remove(old_d)
global_step += 1
if epoch > hps.max_epochs:
print("Maximum epoch reached, closing training...")
exit()
if rank == 0:
logger.info('====> Epoch: {}'.format(epoch))
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
with torch.no_grad():
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(eval_loader):
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
speakers = speakers.cuda(0)
# remove else
x = x[:1]
x_lengths = x_lengths[:1]
spec = spec[:1]
spec_lengths = spec_lengths[:1]
y = y[:1]
y_lengths = y_lengths[:1]
speakers = speakers[:1]
break
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, max_len=1000)
y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
image_dict = {
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
}
audio_dict = {
"gen/audio": y_hat[0,:,:y_hat_lengths[0]]
}
if global_step == 0:
image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
main()