Lwasinam's picture
Upload 8 files
61e1114
from model import build_transformer
from dataset import BilingualDataset, causal_mask
from config import get_config, get_weights_file_path
import torchtext.datasets as datasets
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from torch.optim.lr_scheduler import LambdaLR
import warnings
from tqdm import tqdm
import os
from pathlib import Path
# Huggingface datasets and tokenizers
from datasets import load_dataset
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
import torchmetrics
from torch.utils.tensorboard import SummaryWriter
def greedy_decode(model, source, source_mask, tokenizer_src, tokenizer_tgt, max_len, device):
sos_idx = tokenizer_tgt.token_to_id("[SOS]")
eos_idx = tokenizer_tgt.token_to_id("[EOS]")
# Precompute the encoder output and reuse it for every step
encoder_output = model.encode(source, source_mask)
# Initialize the decoder input with the sos token
decoder_input = torch.empty(1, 1).fill_(sos_idx).type_as(source).to(device)
while True:
if decoder_input.size(1) == max_len:
break
# build mask for target
decoder_mask = causal_mask(decoder_input.size(1)).type_as(source_mask).to(device)
# calculate output
out =model.decode(decoder_input,source_mask, decoder_mask, encoder_output)
# get next token
prob = model.project(out[:, -1])
_, next_word = torch.max(prob, dim=1)
decoder_input = torch.cat(
[decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1
)
if next_word == eos_idx:
break
return decoder_input.squeeze(0)
def run_validation(model, validation_ds, tokenizer_src, tokenizer_tgt, max_len, device, print_msg, global_step,num_examples=2):
model.eval()
count = 0
source_texts = []
expected = []
predicted = []
try:
# get the console window width
with os.popen('stty size', 'r') as console:
_, console_width = console.read().split()
console_width = int(console_width)
except:
# If we can't get the console width, use 80 as default
console_width = 80
with torch.no_grad():
for batch in validation_ds:
count += 1
encoder_input = batch["encoder_input"].to(device) # (b, seq_len)
encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len)
# check that the batch size is 1
assert encoder_input.size(
0) == 1, "Batch size must be 1 for validation"
model_out = greedy_decode(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, max_len, device)
source_text = batch["src_text"][0]
target_text = batch["tgt_text"][0]
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
source_texts.append(source_text)
expected.append(target_text)
predicted.append(model_out_text)
# Print the source, target and model output
print_msg('-'*console_width)
print_msg(f"{f'SOURCE: ':>12}{source_text}")
print_msg(f"{f'TARGET: ':>12}{target_text}")
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")
if count == num_examples:
print_msg('-'*console_width)
break
# if writer:
# # Evaluate the character error rate
# # Compute the char error rate
# metric = torchmetrics.CharErrorRate()
# cer = metric(predicted, expected)
# writer.add_scalar('validation cer', cer, global_step)
# writer.flush()
# # Compute the word error rate
# metric = torchmetrics.WordErrorRate()
# wer = metric(predicted, expected)
# writer.add_scalar('validation wer', wer, global_step)
# writer.flush()
# # Compute the BLEU metric
# metric = torchmetrics.BLEUScore()
# bleu = metric(predicted, expected)
# writer.add_scalar('validation BLEU', bleu, global_step)
# writer.flush()
def get_all_sentences(ds, lang):
for item in ds:
yield item[lang]
def get_or_build_tokenizer(config, ds, lang):
tokenizer_path = Path(config['tokenizer_file'].format(lang))
if not Path.exists(tokenizer_path):
# Most code taken from: https://huggingface.co/docs/tokenizers/quicktour
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2)
tokenizer.train_from_iterator(get_all_sentences(ds, lang), trainer=trainer)
tokenizer.save(str(tokenizer_path))
else:
tokenizer = Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def get_ds(config):
# It only has the train split, so we divide it overselves
ds_raw = load_dataset('Lwasinam/en-ha',
# f"{config['lang_src']}-{config['lang_tgt']}",
split='train')
print(ds_raw[0])
# Build tokenizers
tokenizer_src = get_or_build_tokenizer(config, ds_raw, config['lang_src'])
tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config['lang_tgt'])
seed = 42 # You can choose any integer as your seed
torch.manual_seed(seed)
# Keep 90% for training, 10% for validation
train_ds_size = int(0.9 * len(ds_raw))
val_ds_size = len(ds_raw) - train_ds_size
train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])
train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
# Find the maximum length of each sentence in the source and target sentence
max_len_src = 0
max_len_tgt = 0
for item in ds_raw:
src_ids = tokenizer_src.encode(item[config['lang_src']]).ids
tgt_ids = tokenizer_tgt.encode(item[config['lang_tgt']]).ids
max_len_src = max(max_len_src, len(src_ids))
max_len_tgt = max(max_len_tgt, len(tgt_ids))
print(f'Max length of source sentence: {max_len_src}')
print(f'Max length of target sentence: {max_len_tgt}')
train_dataloader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True)
val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True)
return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt
def get_model(config, vocab_src_len, vocab_tgt_len):
model = build_transformer( config['seq_len'],config['batch_size'], vocab_tgt_len,vocab_src_len, config['d_model'] )
return model
def train_model(config):
# Define the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
# Make sure the weights folder exists
Path(config['model_folder']).mkdir(parents=True, exist_ok=True)
train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)
model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device)
# Tensorboard
writer = SummaryWriter(config['experiment_name'])
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps=1e-9)
# If the user specified a model to preload before training, load it
initial_epoch = 0
global_step = 0
if config['preload']:
model_filename = get_weights_file_path(config, config['preload'])
print(f'Preloading model {model_filename}')
state = torch.load(model_filename)
model.load_state_dict(state['model_state_dict'])
initial_epoch = state['epoch'] + 1
optimizer.load_state_dict(state['optimizer_state_dict'])
global_step = state['global_step']
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_src.token_to_id("[PAD]"), label_smoothing=0.1).to(device)
for epoch in range(initial_epoch, config['num_epochs']):
model.train()
batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}")
for batch in batch_iterator:
optimizer.zero_grad()
encoder_input = batch['encoder_input'].to(device) # (b, seq_len)
decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)
# Run the tensors through the encoder, decoder and the projection layer
encoder_output = model.encode(encoder_input, encoder_mask) # (B, seq_len, d_model)
decoder_output = model.decode( decoder_input,encoder_mask, decoder_mask, encoder_output) # (B, seq_len, d_model)
proj_output = model.project(decoder_output)
# (B, seq_len, vocab_size)
# Compare the output with the label
label = batch['label'].to(device) # (B, seq_len)
# Compute the loss using a simple cross entropy
loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})
# Log the loss
writer.add_scalar('train loss', loss.item(), global_step)
writer.flush()
# Backpropagate the loss
loss.backward()
# Update the weights
optimizer.step()
global_step += 1
model.eval()
eval_loss = 0.0
# batch_iterator = tqdm(v_dataloader, desc=f"Processing Epoch {epoch:02d}")
with torch.no_grad():
for batch in val_dataloader:
encoder_input = batch['encoder_input'].to(device) # (b, seq_len)
decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)
# Run the tensors through the encoder, decoder and the projection layer
encoder_output = model.encode(encoder_input, encoder_mask) # (B, seq_len, d_model)
decoder_output = model.decode( decoder_input,encoder_mask, decoder_mask, encoder_output) # (B, seq_len, d_model)
proj_output = model.project(decoder_output)
# (B, seq_len, vocab_size)
# Compare the output with the label
label = batch['label'].to(device) # (B, seq_len)
# Compute the loss using a simple cross entropy
eval_loss += loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
avg_val_loss = eval_loss / len(val_dataloader)
print(f'Epoch {epoch},Validation Loss: {avg_val_loss.item()}')
# Run validation at the end of every epoch
run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step)
# Save the model at the end of every epoch
model_filename = get_weights_file_path(config, f"{epoch:02d}")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'global_step': global_step
}, model_filename)
if __name__ == '__main__':
warnings.filterwarnings("ignore")
config = get_config()
train_model(config)