Outline_Embedding / utils /shape_features.py
LuyangZ's picture
Upload 30 files
01df1d6 verified
raw
history blame
19.7 kB
import pandas as pd
import numpy as np
import math
from statistics import mean, stdev
from collections import defaultdict
import shapely
import shapely.wkt
from shapely.geometry import Point, MultiPoint, LineString, MultiLineString, Polygon, LinearRing
from shapely.ops import voronoi_diagram, substring, unary_union, nearest_points
from shapely import affinity
from shapely.prepared import prep
import cv2 as cv
def segments(polyline):
return list(map(LineString, zip(polyline.coords[:-1], polyline.coords[1:])))
def scale_move_x(x, xmin_abs, scale):
xn = (x / scale) - 1 - xmin_abs
return xn
def scale_move_y(y, ymin_abs, scale):
yn = (y / scale) - 1 - ymin_abs
return yn
def scale_area(a, scale):
a = a / (scale**2)
return a
def scale_perimeter(p, scale):
p = p / scale
return p
def wall_segment_cosine(direction, apa_line_seg):
seg_s = list(apa_line_seg.coords)[0]
seg_e = list(apa_line_seg.coords)[1]
normal_x = seg_e[0] - seg_s[0]
normal_y = seg_e[1] - seg_s[1]
normal_s = (-normal_y, normal_x)
normal_e = (normal_y, -normal_x)
o = np.array([-normal_y, normal_x])
w = np.array([normal_y, -normal_x])
if direction == "south":
d = np.array([-normal_y, normal_x-1])
if direction == "east":
d = np.array([-normal_y+1, normal_x])
if direction == "north":
d = np.array([-normal_y, normal_x+1])
if direction == "west":
d = np.array([-normal_y-1, normal_x])
od = d - o
ow = w - o
cosine = np.dot(od, ow) / (np.linalg.norm(od) * np.linalg.norm(ow))
return cosine
# Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio
def wall_direction_ratio(apa_line, apa_wall):
apa_wall_O = [i for indx,i in enumerate(segments(apa_line)) if apa_wall[indx] == "O"]
apa_wall_O = MultiLineString(apa_wall_O)
wall_O_length = []
wall_O_south = []
wall_O_east = []
wall_O_north = []
wall_O_west = []
apa_wall_O_num = len(apa_wall_O.geoms)
if apa_wall_O_num > 0:
for i in range(apa_wall_O_num):
wall_seg = apa_wall_O.geoms[i]
wall_length = wall_seg.length
south_cos = wall_segment_cosine("south", wall_seg)
east_cos = wall_segment_cosine("east", wall_seg)
north_cos = wall_segment_cosine("north", wall_seg)
west_cos = wall_segment_cosine("west", wall_seg)
if south_cos < 0:
south_cos = 0
if east_cos < 0:
east_cos = 0
if north_cos < 0:
north_cos = 0
if west_cos < 0:
west_cos = 0
wall_O_length.append(wall_length)
wall_O_south.append(south_cos)
wall_O_east.append(east_cos)
wall_O_north.append(north_cos)
wall_O_west.append(west_cos)
max_length_index = np.array(wall_O_length).argmax()
Dir_S_longestedge = wall_O_south[max_length_index]
Dir_N_longestedge = wall_O_north[max_length_index]
Dir_W_longestedge = wall_O_west[max_length_index]
Dir_E_longestedge = wall_O_east[max_length_index]
Dir_S_max = max(wall_O_south)
Dir_N_max = max(wall_O_north)
Dir_W_max = max(wall_O_west)
Dir_E_max = max(wall_O_east)
Facade_length = apa_wall_O.length
apa_line_length = apa_line.length
Facade_ratio = Facade_length / apa_line_length
else:
Dir_S_longestedge = 0
Dir_N_longestedge = 0
Dir_W_longestedge = 0
Dir_E_longestedge = 0
Dir_S_max = 0
Dir_N_max = 0
Dir_W_max = 0
Dir_E_max = 0
Facade_length = 0
Facade_ratio = 0
return Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio
# apa_geo
def apartment_perimeter(apa_geo):
perimeter =apa_geo.length
return perimeter
def apartment_area(apa_geo):
area =apa_geo.area
return area
def boundingbox(apa_geo):
boundingbox = apa_geo.bounds
return boundingbox
# BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y
def boundingbox_features(apa_geo):
# [Aspect_ratio, Extent] ---> https://docs.opencv.org/3.4/d1/d32/tutorial_py_contour_properties.html
bbox_xy = boundingbox(apa_geo)
bbox_geo = Polygon([(bbox_xy[0], bbox_xy[1]), (bbox_xy[2], bbox_xy[1]), (bbox_xy[2], bbox_xy[3]), (bbox_xy[0], bbox_xy[3])])
BBox_width_x = bbox_xy[2] - bbox_xy[0]
BBox_height_y = bbox_xy[3] - bbox_xy[1]
Aspect_ratio = BBox_width_x / BBox_height_y
bbox_geo_area = bbox_geo.area
Area = apartment_area(apa_geo)
Extent = Area / bbox_geo_area
ULC_x = bbox_xy[0]
ULC_y = bbox_xy[3]
LRC_x = bbox_xy[2]
LRC_y = bbox_xy[1]
return BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y
# Max_diameter
def max_diameter(apa_geo):
# [Max_diameter] ---> https://www.mvtec.com/doc/halcon/12/en/diameter_region.html
apa_coor = list(apa_geo.exterior.coords)
pp_dis_lst = []
for i in apa_coor:
for j in apa_coor:
pp_dis = Point(i).distance(Point(j))
pp_dis_lst.append(pp_dis)
max_diameter = max(pp_dis_lst)
return max_diameter
def fractality(apa_geo):
# [Fractality] ---> https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1538-4632.2000.tb00419.x
# Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
Area = apartment_area(apa_geo)
Perimeter = apartment_perimeter(apa_geo)
fractality = 1 - ((math.log(Area) / (2 * math.log(Perimeter))))
return fractality
def circularity(apa_geo):
# [Circularity] ---> https://www.mvtec.com/doc/halcon/12/en/circularity.html
apa_coor = list(apa_geo.exterior.coords)
op_dis_lst = []
for i in apa_coor:
op_dis = Point((0, 0)).distance(Point(i))
op_dis_lst.append(op_dis)
Max_radius = max(op_dis_lst)
Area = apartment_area(apa_geo)
circularity = Area / ((math.pi) * (Max_radius**2))
return circularity
def outer_radius(p_4_cv, xmin_abs, ymin_abs, scale):
# [Outer_radius] ---> https://docs.opencv.org/4.x/d3/dc0/group__imgproc__shape.html#ga8ce13c24081bbc7151e9326f412190f1
(xmin,ymin),radius = cv.minEnclosingCircle(p_4_cv)
mini_Enclosing_Cir_x = scale_move_x(xmin, xmin_abs, scale)
mini_Enclosing_Cir_y = scale_move_y(ymin, ymin_abs, scale)
mini_Enclosing_Cir_radius = scale_perimeter(radius, scale)
outer_radius = mini_Enclosing_Cir_radius
return outer_radius
def inner_radius(apa_geo, apa_line):
# [Inner_radius] ---> https://www.sthu.org/blog/14-skeleton-offset-topology/index.html
dis_p = []
for i in np.arange(0, apa_line.length, 0.1):
s = substring(apa_line, i, i+0.1)
dis_p.append(s.boundary.geoms[0])
mp = MultiPoint(dis_p)
regions = voronoi_diagram(mp)
vo_p = []
for i in range(len(regions.geoms)):
vo = regions.geoms[i]
b = list(vo.exterior.coords)
for j in range(len(b)):
p = Point(b[j])
vo_p.append(p)
vo_p = MultiPoint(vo_p)
vo_p = unary_union(vo_p)
vo_p_b = []
for i in range(len(vo_p.geoms)):
t_c_p = vo_p.geoms[i]
pc = apa_geo.contains(t_c_p)
vo_p_b.append(pc)
vo_filtered_p = [i for indx,i in enumerate(vo_p.geoms) if vo_p_b[indx] == True]
vo_d = []
for i in range(len(vo_filtered_p)):
c = Point(vo_filtered_p[i])
d_min = c.distance(apa_line)
vo_d.append(d_min)
vo_r_max = max(vo_d)
vo_r_max_index = vo_d.index(vo_r_max)
vo_c_max = vo_filtered_p[vo_r_max_index]
vo_c_max = list(vo_c_max.coords)
max_Inner_Circle_x = vo_c_max[0][0]
max_Inner_Circle_y = vo_c_max[0][1]
max_Inner_Circle_r = vo_r_max
inner_radius = max_Inner_Circle_r
return inner_radius
def roundness_features(apa_line):
# [Dist_mean, Dist_sigma, Roundness] ---> https://www.mvtec.com/doc/halcon/12/en/roundness.html
rou_p = []
for i in np.arange(0, apa_line.length, 0.5):
s = substring(apa_line, i, i+0.5)
rou_p.append(s.boundary.geoms[0])
rp = MultiPoint(rou_p)
ro_dis = []
for i in range(len(rp.geoms)):
rpp = rp.geoms[i]
ro = Point(rpp).distance(Point((0, 0)))
ro_dis.append(ro)
dist_mean = mean(ro_dis)
# dist_sigma = stdev(ro_dis)
dev_lst = []
for i in ro_dis:
dev = (i - dist_mean)**2
dev_lst.append(dev)
dist_sigma = mean(dev_lst)
dist_sigma = math.sqrt(dist_sigma)
roundness = 1 - (dist_sigma/dist_mean)
return dist_mean, dist_sigma, roundness
def compactness(apa_geo):
# [Compactness] ---> https://fisherzachary.github.io/public/r-output.html
Area = apartment_area(apa_geo)
Perimeter = apartment_perimeter(apa_geo)
compactness = (4*(math.pi)) * (Area / (Perimeter**2))
return compactness
def equivalent_diameter(apa_geo):
# https://docs.opencv.org/4.x/d1/d32/tutorial_py_contour_properties.html
Area = apartment_area(apa_geo)
equivalent_diameter = math.sqrt((4 * Area) / math.pi)
return equivalent_diameter
def shape_membership_index(apa_line):
# [Shape_membership_index] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
line_smi = LineString([(0, 0), (30, 0)])
numl = 30
line_rot_degree = 360 / numl
line_rot = []
for an in range(numl):
ang = an*line_rot_degree
lr = affinity.rotate(line_smi, ang, (0, 0))
line_rot.append(lr)
line_rot = MultiLineString(line_rot)
smip = shapely.intersection(apa_line, line_rot)
simo_dis = []
for i in range(len(smip.geoms)):
sim_p = smip.geoms[i]
simo = Point(sim_p).distance(Point((0, 0)))
simo_dis.append(simo)
sim_r_max = max(simo_dis)
simo_maxd = []
for j in simo_dis:
rmax_d = j / sim_r_max
simo_maxd.append(rmax_d)
simo_maxd_mean = mean(simo_maxd)
simo_rad = []
for j in range(len(simo_dis)):
s = simo_dis[j]
if j == (len(simo_dis) - 1):
nu = 0
else:
nu = j+1
e = simo_dis[nu]
if s <= e:
a = np.array([1,s])
b = np.array([0,s])
c = np.array([1,e])
else:
a = np.array([1,e])
b = np.array([0,e])
c = np.array([1,s])
ba = a - b
bc = c - b
cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
angle_rad = np.arccos(cosine_angle)
simo_rad.append(angle_rad)
simo_rad_min = min(simo_rad)
simo_rad_max = max(simo_rad)
simo_cos = math.cos(simo_rad_max - simo_rad_min)
shape_membership_index = simo_cos * simo_maxd_mean
return shape_membership_index
def convexity(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale):
# [Convexity] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
hull = cv.convexHull(p_4_cv)
hull_x = []
hull_y = []
for h in range(len(hull)):
h_x = hull[h][0][0]
h_x = scale_move_x(h_x, xmin_abs, scale)
hull_x.append(h_x)
h_y = hull[h][0][1]
h_y = scale_move_y(h_y, ymin_abs, scale)
hull_y.append(h_y)
hull_xy = []
for i in range(len(hull_x)):
hx = hull_x[i]
hy = hull_y[i]
hull_xy.append((hx, hy))
hull_geo = Polygon(hull_xy)
Hull_area = hull_geo.area
Area = apartment_area(apa_geo)
convexity = Area / Hull_area
return convexity, hull_geo
def rectangle_features(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale):
# [Rectangularity] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
rect = cv.minAreaRect(p_4_cv)
miniRect_rotation_angle = rect[2]
box = cv.boxPoints(rect)
box = np.intp(box)
miniRect_x = []
miniRect_y = []
for b in range(len(box)):
b_x = box[b][0]
b_x = scale_move_x(b_x, xmin_abs, scale)
miniRect_x.append(b_x)
b_y = box[b][1]
b_y = scale_move_y(b_y, ymin_abs, scale)
miniRect_y.append(b_y)
miniRec_xy = []
for i in range(len(miniRect_x)):
minirecx = miniRect_x[i]
minirecy = miniRect_y[i]
miniRec_xy.append((minirecx, minirecy))
miniRect_geo = Polygon(miniRec_xy)
miniRect_area = miniRect_geo.area
Area = apartment_area(apa_geo)
rectangularity = Area / miniRect_area
rect_phi = (miniRect_rotation_angle * math.pi) / 180
miniRect_line = miniRect_geo.boundary
miniRect_segments = segments(miniRect_line)
seg_len = []
for s in miniRect_segments:
seg_len.append(s.length)
rect_width = max(seg_len)
rect_height = min(seg_len)
return rectangularity, rect_phi, rect_width, rect_height
def squareness(apa_geo):
# [Squareness] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
Area = apartment_area(apa_geo)
Perimeter = apartment_perimeter(apa_geo)
squareness = (4*(math.sqrt(Area))) / Perimeter
return squareness
def moments(apa_geo):
# https://leancrew.com/all-this/2018/01/python-module-for-section-properties/
pts = list(apa_geo.exterior.coords)
if pts[0] != pts[-1]:
pts = pts + pts[:1]
x = [ c[0] for c in pts ]
y = [ c[1] for c in pts ]
sxx = syy = sxy = 0
a = apartment_area(apa_geo)
cx = apa_geo.centroid.x
cy = apa_geo.centroid.y
for i in range(len(pts) - 1):
sxx += (y[i]**2 + y[i]*y[i+1] + y[i+1]**2)*(x[i]*y[i+1] - x[i+1]*y[i])
syy += (x[i]**2 + x[i]*x[i+1] + x[i+1]**2)*(x[i]*y[i+1] - x[i+1]*y[i])
sxy += (x[i]*y[i+1] + 2*x[i]*y[i] + 2*x[i+1]*y[i+1] + x[i+1]*y[i])*(x[i]*y[i+1] - x[i+1]*y[i])
return sxx/12 - a*cy**2, syy/12 - a*cx**2, sxy/24 - a*cx*cy
def moment_index(apa_geo, Convexity, Compactness):
# https://www.researchgate.net/publication/228557311_A_COMBINED_AUTOMATED_GENERALIZATION_MODEL_BASED_ON_THE_RELATIVE_FORCES_BETWEEN_SPATIAL_OBJECTS
Ixx, Iyy, Ixy = moments(apa_geo)
ratio = max(Ixx, Iyy) / min(Ixx, Iyy)
# Convexity, Hull_geo = convexity(p_4_cv)
# Compactness = compactness(apa_geo)
moment_index = (Convexity * Compactness) / ratio
return moment_index
def ndetour_index(apa_geo, Hull_geo):
# [nDetour_index] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
Hull_line = Hull_geo.boundary
Hull_length = Hull_line.length
Area = apartment_area(apa_geo)
ndetour_index = (2 * math.sqrt(Area * math.pi)) / Hull_length
return ndetour_index
def ncohesion_index(apa_geo, grid_points):
# [nCohesion_index] ---> Basaraner, M. and Cetinkaya, S. (2017) ‘Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS’, International Journal of Geographical Information Science, 31(10), pp. 1952–1977. doi:10.1080/13658816.2017.1346257.
grid_p = grid_points.geoms
grid_n = len(grid_p)
gg_dis_lst = []
for i in grid_p:
for j in grid_p:
gg_dis = Point(i).distance(Point(j))
gg_dis_lst.append(gg_dis)
Area = apartment_area(apa_geo)
ncohesion_index = (0.9054 * math.sqrt(Area / math.pi)) / (sum(gg_dis_lst) / (grid_n * (grid_n-1)))
return ncohesion_index
def nproximity_nspin_index(apa_geo, grid_points):
grid_p = grid_points.geoms
go_dis_lst = []
for i in grid_p:
go_dis = Point(i).distance(Point(0,0))
go_dis_lst.append(go_dis)
go_dis_mean = mean(go_dis_lst)
Area = apartment_area(apa_geo)
nproximity_index = ((2 / 3) * math.sqrt(Area / math.pi)) / go_dis_mean
nspin_index = (0.5 * (Area / math.pi)) / (go_dis_mean**2)
return nproximity_index, nspin_index
def nexchange_index(apa_geo):
Area = apartment_area(apa_geo)
eac_r = math.sqrt(Area / math.pi)
eac = Point(0,0).buffer(eac_r)
eac_inter = apa_geo.intersection(eac)
if eac_inter.geom_type == "Polygon":
eac_area = eac_inter.area
else:
eacga_lst = []
for i in range(len(eac_inter.geoms)):
eacg = eac_inter.geoms[i]
eacga = eacg.area
eacga_lst.append(eacga)
eac_area = sum(eacga_lst)
nexchange_index = eac_area / Area
return nexchange_index
def nperimeter_index(apa_geo):
Area = apartment_area(apa_geo)
Perimeter = apartment_perimeter(apa_geo)
nperimeter_index = (2 * math.sqrt(math.pi * Area)) / Perimeter
return nperimeter_index
def ndepth_index(apa_geo, apa_line, grid_points):
moved_apa_line = apa_line
grid_p = grid_points.geoms
nea_len_lst = []
for i in grid_p:
nea_line = LineString(nearest_points(moved_apa_line, i))
nea_len = nea_line.length
nea_len_lst.append(nea_len)
nea_len_mean = mean(nea_len_lst)
Area = apartment_area(apa_geo)
ndepth_index = (3 * nea_len_mean) / math.sqrt(Area / math.pi)
return ndepth_index
def ngirth_index(apa_geo, Inner_radius):
Area = apartment_area(apa_geo)
ngirth_index = Inner_radius / math.sqrt(Area / math.pi)
return ngirth_index
def nrange_index(apa_geo, Outer_radius):
Area = apartment_area(apa_geo)
nrange_index = math.sqrt(Area / math.pi) / Outer_radius
return nrange_index
def ntraversal_index(apa_geo, apa_line):
rou_p = []
for i in np.arange(0, apa_line.length, 0.5):
s = substring(apa_line, i, i+0.5)
rou_p.append(s.boundary.geoms[0])
rp = MultiPoint(rou_p)
rp_n = len(rp.geoms)
bb_dis_lst = []
for i in rp.geoms:
for j in rp.geoms:
bb_dis = Point(i).distance(Point(j))
bb_dis_lst.append(bb_dis)
bb_dis_mean = sum(bb_dis_lst) / (rp_n * (rp_n-1))
Area = apartment_area(apa_geo)
ntraversal_index = (4 * (math.sqrt(Area / math.pi) / math.pi)) / bb_dis_mean
return ntraversal_index