APP
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Assuming we have an API endpoint that provides the required data
|
6 |
+
API_ENDPOINT = "https://api.example.com/crypto/top-volume/12h"
|
7 |
+
|
8 |
+
def fetch_top_cryptos():
|
9 |
+
# Placeholder for API call and data processing
|
10 |
+
# In a real scenario, replace this with a call to the actual API
|
11 |
+
response = requests.get(API_ENDPOINT)
|
12 |
+
if response.status_code == 200:
|
13 |
+
data = response.json()
|
14 |
+
# Assuming the API returns data in a format that can be directly converted to a DataFrame
|
15 |
+
df = pd.DataFrame(data)
|
16 |
+
# Selecting and formatting the relevant columns
|
17 |
+
df = df[['name', 'volume_invested']]
|
18 |
+
return df
|
19 |
+
else:
|
20 |
+
return "Error fetching data"
|
21 |
+
|
22 |
+
# Gradio interface
|
23 |
+
iface = gr.Interface(
|
24 |
+
fn=fetch_top_cryptos,
|
25 |
+
inputs=None,
|
26 |
+
outputs="dataframe",
|
27 |
+
title="Top Cryptocurrencies by Volume",
|
28 |
+
description="Shows the top cryptocurrencies by volume invested in the past 12 hours."
|
29 |
+
)
|
30 |
+
|
31 |
+
# The API key for deploying on Hugging Face Spaces
|
32 |
+
api_key = "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"
|
33 |
+
|
34 |
+
# Launch the app locally for testing
|
35 |
+
if __name__ == "__main__":
|
36 |
+
iface.launch()
|
37 |
+
|
38 |
+
# To deploy on Hugging Face Spaces, use the `launch` method with `share=True` and the `api_key` parameter
|