|
import os |
|
import subprocess |
|
|
|
|
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True, |
|
) |
|
|
|
|
|
import copy |
|
import spaces |
|
import time |
|
import torch |
|
|
|
from threading import Thread |
|
from typing import List, Dict, Union |
|
import urllib |
|
from urllib.parse import urlparse |
|
from PIL import Image |
|
import io |
|
import pandas as pd |
|
import datasets |
|
import json |
|
import requests |
|
|
|
import gradio as gr |
|
from transformers import AutoProcessor, TextIteratorStreamer |
|
from transformers import Idefics2ForConditionalGeneration |
|
|
|
|
|
DEVICE = torch.device("cuda") |
|
MODELS = { |
|
"idefics2-8b-chatty": Idefics2ForConditionalGeneration.from_pretrained( |
|
"HuggingFaceM4/idefics2-8b-chatty", |
|
torch_dtype=torch.bfloat16, |
|
_attn_implementation="flash_attention_2", |
|
trust_remote_code=True, |
|
token=os.environ["HF_AUTH_TOKEN"], |
|
).to(DEVICE), |
|
} |
|
PROCESSOR = AutoProcessor.from_pretrained( |
|
"HuggingFaceM4/idefics2-8b", |
|
token=os.environ["HF_AUTH_TOKEN"], |
|
) |
|
|
|
SYSTEM_PROMPT = [ |
|
{ |
|
"role": "system", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": "The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer Userβs questions. Assistant has the ability to perceive images and reason about the content of visual inputs. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.", |
|
}, |
|
], |
|
} |
|
] |
|
|
|
API_TOKEN = os.getenv("HF_AUTH_TOKEN") |
|
HF_WRITE_TOKEN = os.getenv("HF_WRITE_TOKEN") |
|
|
|
BOT_AVATAR = "IDEFICS_logo.png" |
|
|
|
|
|
|
|
def turn_is_pure_media(turn): |
|
return turn[1] is None |
|
|
|
|
|
def load_image_from_url(url): |
|
with urllib.request.urlopen(url) as response: |
|
image_data = response.read() |
|
image_stream = io.BytesIO(image_data) |
|
image = Image.open(image_stream) |
|
return image |
|
|
|
|
|
def img_to_bytes(image_path): |
|
image = Image.open(image_path) |
|
buffer = io.BytesIO() |
|
image.save(buffer, format="JPEG") |
|
img_bytes = buffer.getvalue() |
|
image.close() |
|
return img_bytes |
|
|
|
|
|
def format_user_prompt_with_im_history_and_system_conditioning( |
|
user_prompt, chat_history |
|
) -> List[Dict[str, Union[List, str]]]: |
|
""" |
|
Produces the resulting list that needs to go inside the processor. |
|
It handles the potential image(s), the history and the system conditionning. |
|
""" |
|
resulting_messages = copy.deepcopy(SYSTEM_PROMPT) |
|
resulting_images = [] |
|
for resulting_message in resulting_messages: |
|
if resulting_message["role"] == "user": |
|
for content in resulting_message["content"]: |
|
if content["type"] == "image": |
|
resulting_images.append(load_image_from_url(content["image"])) |
|
|
|
|
|
for turn in chat_history: |
|
if not resulting_messages or ( |
|
resulting_messages and resulting_messages[-1]["role"] != "user" |
|
): |
|
resulting_messages.append( |
|
{ |
|
"role": "user", |
|
"content": [], |
|
} |
|
) |
|
|
|
if turn_is_pure_media(turn): |
|
media = turn[0][0] |
|
resulting_messages[-1]["content"].append({"type": "image"}) |
|
resulting_images.append(Image.open(media)) |
|
else: |
|
user_utterance, assistant_utterance = turn |
|
resulting_messages[-1]["content"].append( |
|
{"type": "text", "text": user_utterance.strip()} |
|
) |
|
resulting_messages.append( |
|
{ |
|
"role": "assistant", |
|
"content": [{"type": "text", "text": user_utterance.strip()}], |
|
} |
|
) |
|
|
|
|
|
if not user_prompt["files"]: |
|
resulting_messages.append( |
|
{ |
|
"role": "user", |
|
"content": [{"type": "text", "text": user_prompt["text"]}], |
|
} |
|
) |
|
else: |
|
|
|
resulting_messages.append( |
|
{ |
|
"role": "user", |
|
"content": [{"type": "image"}] * len(user_prompt["files"]) |
|
+ [{"type": "text", "text": user_prompt["text"]}], |
|
} |
|
) |
|
resulting_images.extend([Image.open(im["path"]) for im in user_prompt["files"]]) |
|
|
|
return resulting_messages, resulting_images |
|
|
|
|
|
def extract_images_from_msg_list(msg_list): |
|
all_images = [] |
|
for msg in msg_list: |
|
for c_ in msg["content"]: |
|
if isinstance(c_, Image.Image): |
|
all_images.append(c_) |
|
return all_images |
|
|
|
|
|
@spaces.GPU(duration=180) |
|
def model_inference( |
|
user_prompt, |
|
chat_history, |
|
model_selector, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
): |
|
if user_prompt["text"].strip() == "" and not user_prompt["files"]: |
|
gr.Error("Please input a query and optionally image(s).") |
|
|
|
if user_prompt["text"].strip() == "" and user_prompt["files"]: |
|
gr.Error("Please input a text query along the image(s).") |
|
|
|
for file in user_prompt["files"]: |
|
if not file["mime_type"].startswith("image/"): |
|
gr.Error("Idefics2 only supports images. Please input a valid image.") |
|
|
|
streamer = TextIteratorStreamer( |
|
PROCESSOR.tokenizer, |
|
skip_prompt=True, |
|
timeout=5.0, |
|
) |
|
|
|
|
|
|
|
generation_args = { |
|
"max_new_tokens": max_new_tokens, |
|
"repetition_penalty": repetition_penalty, |
|
"streamer": streamer, |
|
} |
|
|
|
assert decoding_strategy in [ |
|
"Greedy", |
|
"Top P Sampling", |
|
] |
|
if decoding_strategy == "Greedy": |
|
generation_args["do_sample"] = False |
|
elif decoding_strategy == "Top P Sampling": |
|
generation_args["temperature"] = temperature |
|
generation_args["do_sample"] = True |
|
generation_args["top_p"] = top_p |
|
|
|
|
|
( |
|
resulting_text, |
|
resulting_images, |
|
) = format_user_prompt_with_im_history_and_system_conditioning( |
|
user_prompt=user_prompt, |
|
chat_history=chat_history, |
|
) |
|
prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True) |
|
inputs = PROCESSOR( |
|
text=prompt, |
|
images=resulting_images if resulting_images else None, |
|
return_tensors="pt", |
|
) |
|
inputs = {k: v.to(DEVICE) for k, v in inputs.items()} |
|
generation_args.update(inputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
thread = Thread( |
|
target=MODELS[model_selector].generate, |
|
kwargs=generation_args, |
|
) |
|
thread.start() |
|
|
|
print("Start generating") |
|
acc_text = "" |
|
for text_token in streamer: |
|
time.sleep(0.04) |
|
acc_text += text_token |
|
if acc_text.endswith("<end_of_utterance>"): |
|
acc_text = acc_text[:-18] |
|
yield acc_text |
|
print("Success - generated the following text:", acc_text) |
|
print("-----") |
|
|
|
|
|
def flag_dope( |
|
model_selector, |
|
chat_history, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
): |
|
images = [] |
|
for ex in chat_history: |
|
if isinstance(ex[0], dict): |
|
images.append(ex[0]["file"]) |
|
prev_ex_is_image = True |
|
|
|
image_flag = images[0] |
|
dope_dataset_writer.flag( |
|
flag_data=[ |
|
model_selector, |
|
image_flag, |
|
chat_history, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
] |
|
) |
|
|
|
|
|
def flag_problematic( |
|
model_selector, |
|
chat_history, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
): |
|
images = [] |
|
for ex in chat_history: |
|
if isinstance(ex[0], dict): |
|
images.append(ex[0]["file"]) |
|
|
|
image_flag = images[0] |
|
problematic_dataset_writer.flag( |
|
flag_data=[ |
|
model_selector, |
|
image_flag, |
|
chat_history, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
] |
|
) |
|
|
|
|
|
|
|
max_new_tokens = gr.Slider( |
|
minimum=8, |
|
maximum=1024, |
|
value=512, |
|
step=1, |
|
interactive=True, |
|
label="Maximum number of new tokens to generate", |
|
) |
|
repetition_penalty = gr.Slider( |
|
minimum=0.01, |
|
maximum=5.0, |
|
value=1.1, |
|
step=0.01, |
|
interactive=True, |
|
label="Repetition penalty", |
|
info="1.0 is equivalent to no penalty", |
|
) |
|
decoding_strategy = gr.Radio( |
|
[ |
|
"Greedy", |
|
"Top P Sampling", |
|
], |
|
value="Greedy", |
|
label="Decoding strategy", |
|
interactive=True, |
|
info="Higher values is equivalent to sampling more low-probability tokens.", |
|
) |
|
temperature = gr.Slider( |
|
minimum=0.0, |
|
maximum=5.0, |
|
value=0.4, |
|
step=0.1, |
|
interactive=True, |
|
label="Sampling temperature", |
|
info="Higher values will produce more diverse outputs.", |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.01, |
|
maximum=0.99, |
|
value=0.8, |
|
step=0.01, |
|
interactive=True, |
|
label="Top P", |
|
info="Higher values is equivalent to sampling more low-probability tokens.", |
|
) |
|
|
|
|
|
chatbot = gr.Chatbot( |
|
label="Idefics2", |
|
avatar_images=[None, BOT_AVATAR], |
|
height=450, |
|
) |
|
|
|
dope_dataset_writer = gr.HuggingFaceDatasetSaver( |
|
HF_WRITE_TOKEN, "HuggingFaceM4/dope-dataset", private=True |
|
) |
|
problematic_dataset_writer = gr.HuggingFaceDatasetSaver( |
|
HF_WRITE_TOKEN, "HuggingFaceM4/problematic-dataset", private=True |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_flag = gr.Image(visible=False) |
|
with gr.Blocks( |
|
fill_height=True, |
|
css=""".gradio-container .avatar-container {height: 40px width: 40px !important;}""", |
|
) as demo: |
|
|
|
with gr.Row(elem_id="model_selector_row"): |
|
model_selector = gr.Dropdown( |
|
choices=MODELS.keys(), |
|
value=list(MODELS.keys())[0], |
|
interactive=True, |
|
show_label=False, |
|
container=False, |
|
label="Model", |
|
visible=True, |
|
) |
|
|
|
decoding_strategy.change( |
|
fn=lambda selection: gr.Slider( |
|
visible=( |
|
selection |
|
in [ |
|
"contrastive_sampling", |
|
"beam_sampling", |
|
"Top P Sampling", |
|
"sampling_top_k", |
|
] |
|
) |
|
), |
|
inputs=decoding_strategy, |
|
outputs=temperature, |
|
) |
|
decoding_strategy.change( |
|
fn=lambda selection: gr.Slider( |
|
visible=( |
|
selection |
|
in [ |
|
"contrastive_sampling", |
|
"beam_sampling", |
|
"Top P Sampling", |
|
"sampling_top_k", |
|
] |
|
) |
|
), |
|
inputs=decoding_strategy, |
|
outputs=repetition_penalty, |
|
) |
|
decoding_strategy.change( |
|
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])), |
|
inputs=decoding_strategy, |
|
outputs=top_p, |
|
) |
|
|
|
gr.ChatInterface( |
|
fn=model_inference, |
|
chatbot=chatbot, |
|
|
|
title="Idefics2 Playground", |
|
multimodal=True, |
|
additional_inputs=[ |
|
model_selector, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
], |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=50): |
|
dope_bttn = gr.Button("Dopeπ₯") |
|
with gr.Column(scale=1, min_width=50): |
|
problematic_bttn = gr.Button("Problematicπ¬") |
|
|
|
dope_dataset_writer.setup( |
|
[ |
|
model_selector, |
|
image_flag, |
|
chatbot, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
], |
|
"gradio_dope_data_points", |
|
) |
|
dope_bttn.click( |
|
fn=flag_dope, |
|
inputs=[ |
|
model_selector, |
|
chatbot, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
], |
|
outputs=None, |
|
preprocess=False, |
|
) |
|
|
|
problematic_dataset_writer.setup( |
|
[ |
|
model_selector, |
|
image_flag, |
|
chatbot, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
], |
|
"gradio_problematic_data_points", |
|
) |
|
problematic_bttn.click( |
|
fn=flag_problematic, |
|
inputs=[ |
|
model_selector, |
|
chatbot, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
], |
|
outputs=None, |
|
preprocess=False, |
|
) |
|
|
|
demo.launch() |
|
|