Spaces:
Build error
Build error
mohitrajdeo
commited on
Commit
Β·
40aa75e
1
Parent(s):
352e088
refactor(app.py): remove commented-out code and unused sections for cleaner codebase
Browse files- app.py +2 -226
- discarded.txt +228 -0
app.py
CHANGED
|
@@ -126,56 +126,6 @@ if selected == 'Home':
|
|
| 126 |
However, this tool has **not undergone clinical validation** and should be used **for informational and educational purposes only**. It is not intended to serve as a substitute for professional medical diagnosis or treatment. Always consult a qualified healthcare provider for medical advice.
|
| 127 |
""")
|
| 128 |
|
| 129 |
-
# st.markdown("""
|
| 130 |
-
# ## Welcome to the **Early Prediction of Health & Lifestyle Diseases**!
|
| 131 |
-
# This tool provides **early prediction and analysis** for various health conditions using **Machine Learning & NLP**.
|
| 132 |
-
|
| 133 |
-
# ### π₯ Available Features:
|
| 134 |
-
# - **π©Έ Disease Predictors**:
|
| 135 |
-
# - Diabetes Prediction
|
| 136 |
-
# - Hypertension Prediction
|
| 137 |
-
# - Cardiovascular Disease Prediction
|
| 138 |
-
# - Stroke Prediction
|
| 139 |
-
# - Asthma Prediction
|
| 140 |
-
# - Sleep Health Analysis
|
| 141 |
-
# # - **β
Checkbox-based Lifestyle Disease Predictor** using **BiomedNLP-PubMedBERT**
|
| 142 |
-
# - **π€ Medical Consultant** (Ask health-related questions)
|
| 143 |
-
# # - **π§ Mental Health Assessment**
|
| 144 |
-
# - **π Data Visualizer** (Analyze trends in health conditions)
|
| 145 |
-
|
| 146 |
-
# π Select an option from the sidebar to proceed!
|
| 147 |
-
# """)
|
| 148 |
-
|
| 149 |
-
# with st.expander("π Quick Start Guide"):
|
| 150 |
-
# st.write("""
|
| 151 |
-
# 1. Select a **health prediction model** from the sidebar.
|
| 152 |
-
# 2. Enter your details in the input fields.
|
| 153 |
-
# 3. Click **Predict** to get your result.
|
| 154 |
-
# 4. View personalized **health insights & recommendations**.
|
| 155 |
-
# """)
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
# # Disclaimer Section
|
| 159 |
-
# st.markdown("---")
|
| 160 |
-
# # st.markdown("""
|
| 161 |
-
# # **β οΈ Disclaimer:** This application has been developed using **real-world healthcare datasets** sourced from Kaggle:
|
| 162 |
-
|
| 163 |
-
# # - [Stroke Prediction Dataset](http://kaggle.com/code/chanchal24/stroke-prediction-using-python/input?select=healthcare-dataset-stroke-data.csv)
|
| 164 |
-
# # - [Asthma Analysis & Prediction](https://www.kaggle.com/code/bryamblasrimac/asthma-eda-prediction-f2score-85/input)
|
| 165 |
-
# # - [Diabetes Dataset](https://www.kaggle.com/datasets/mathchi/diabetes-data-set)
|
| 166 |
-
# # - [Cardiovascular Disease Dataset](https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset)
|
| 167 |
-
# # - [Sentiment Analysis for Mental Health](https://www.kaggle.com/datasets/suchintikasarkar/sentiment-analysis-for-mental-health)
|
| 168 |
-
# # - [Sleep Health Analysis](https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset)
|
| 169 |
-
# # \
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
# st.markdown("""
|
| 173 |
-
# The predictions are generated using **machine learning models** trained on these datasets, incorporating **evaluation metrics and graphical insights** to enhance interpretability.
|
| 174 |
-
|
| 175 |
-
# However, this tool has **not undergone clinical validation** and should be used **for informational and educational purposes only**. It is not intended to serve as a substitute for professional medical diagnosis or treatment. Always consult a qualified healthcare provider for medical advice.
|
| 176 |
-
# """)
|
| 177 |
-
|
| 178 |
-
|
| 179 |
if selected == 'Diabetes Prediction':
|
| 180 |
st.title('π©Έ Diabetes Prediction using ML (SVC)')
|
| 181 |
st.image("https://cdn-icons-png.flaticon.com/512/2919/2919950.png", width=100)
|
|
@@ -492,182 +442,8 @@ if selected == 'Data Visualization':
|
|
| 492 |
st.pyplot(fig)
|
| 493 |
|
| 494 |
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
# st.markdown("### Discuss Your Health Concerns with Our AI-powered Chatbot")
|
| 498 |
-
# st.write("Ask about **Diabetes, Asthma, Stroke, Cardiovascular Disease, or Mental Health.**")
|
| 499 |
-
|
| 500 |
-
# genai.configure(api_key="AIzaSyAwyi9c5OdvLoWrv5lFi1jZDEYwuprQAKE")
|
| 501 |
-
|
| 502 |
-
# # Custom Styling
|
| 503 |
-
# st.markdown("""
|
| 504 |
-
# <style>
|
| 505 |
-
# .prompt-box {
|
| 506 |
-
# background-color: #000000;
|
| 507 |
-
# padding: 12px;
|
| 508 |
-
# border-radius: 8px;
|
| 509 |
-
# font-size: 14px;
|
| 510 |
-
# font-family: sans-serif;
|
| 511 |
-
# margin-bottom: 10px;
|
| 512 |
-
# border: 1px solid #dee2e6;
|
| 513 |
-
# text-align: center;
|
| 514 |
-
# }
|
| 515 |
-
# </style>
|
| 516 |
-
# """, unsafe_allow_html=True)
|
| 517 |
-
|
| 518 |
-
# st.markdown("#### π‘ Common Health Queries")
|
| 519 |
-
|
| 520 |
-
# prompt_options = [
|
| 521 |
-
# ("Diabetes β Diet", "What foods should I eat if I have diabetes?"),
|
| 522 |
-
# ("Diabetes β Exercise", "What type of workouts help control blood sugar levels?"),
|
| 523 |
-
# ("Asthma β Triggers", "What are common asthma triggers?"),
|
| 524 |
-
# ("Asthma β Treatment", "What are the best medications for asthma?"),
|
| 525 |
-
# ("Stroke β Symptoms", "What are the early warning signs of a stroke?"),
|
| 526 |
-
# ("Stroke β Prevention", "How can I reduce my risk of stroke?"),
|
| 527 |
-
# ("Cardiovascular β Heart Health", "How can I reduce my risk of heart disease?"),
|
| 528 |
-
# ("Cardiovascular β Blood Pressure", "What lifestyle changes can lower high blood pressure?"),
|
| 529 |
-
# ("Mental Health β Stress Management", "How can I manage stress effectively?"),
|
| 530 |
-
# ("Mental Health β Sleep Disorders", "What are the causes and treatments for sleep disorders?")
|
| 531 |
-
# ]
|
| 532 |
-
|
| 533 |
-
# # Display prompts in two columns (2 prompts per row)
|
| 534 |
-
# cols = st.columns(2)
|
| 535 |
-
# for i in range(0, len(prompt_options), 2):
|
| 536 |
-
# with cols[0]:
|
| 537 |
-
# if i < len(prompt_options):
|
| 538 |
-
# label, prompt = prompt_options[i]
|
| 539 |
-
# st.markdown(f"""<div class="prompt-box"><strong>{label}</strong><br>{prompt}</div>""", unsafe_allow_html=True)
|
| 540 |
-
|
| 541 |
-
# with cols[1]:
|
| 542 |
-
# if i+1 < len(prompt_options):
|
| 543 |
-
# label, prompt = prompt_options[i+1]
|
| 544 |
-
# st.markdown(f"""<div class="prompt-box"><strong>{label}</strong><br>{prompt}</div>""", unsafe_allow_html=True)
|
| 545 |
-
|
| 546 |
-
# # Initialize chat history if not present
|
| 547 |
-
# if "chat_history" not in st.session_state:
|
| 548 |
-
# st.session_state.chat_history = []
|
| 549 |
-
|
| 550 |
-
# # Display previous chat history
|
| 551 |
-
# for message in st.session_state.chat_history:
|
| 552 |
-
# with st.chat_message(message["role"]):
|
| 553 |
-
# st.markdown(message["content"])
|
| 554 |
-
|
| 555 |
-
# # User input field
|
| 556 |
-
# user_prompt = st.chat_input("Ask about Diabetes, Asthma, Stroke, Cardiovascular Disease, or Mental Health...")
|
| 557 |
-
|
| 558 |
-
# # List of allowed topics
|
| 559 |
-
# allowed_keywords = ["diabetes", "asthma", "stroke", "cardiovascular", "heart", "blood pressure",
|
| 560 |
-
# "mental health", "depression", "stress", "cholesterol", "sleep disorders"]
|
| 561 |
-
|
| 562 |
-
# if user_prompt:
|
| 563 |
-
# # Display user message
|
| 564 |
-
# st.chat_message("user").markdown(user_prompt)
|
| 565 |
-
# st.session_state.chat_history.append({"role": "user", "content": user_prompt})
|
| 566 |
-
|
| 567 |
-
# # Restriction: Only process if related to health topics
|
| 568 |
-
# if any(keyword in user_prompt.lower() for keyword in allowed_keywords):
|
| 569 |
-
# model = genai.GenerativeModel("gemini-2.0-flash")
|
| 570 |
-
# response = model.generate_content(user_prompt)
|
| 571 |
-
|
| 572 |
-
# if response and hasattr(response, "text"):
|
| 573 |
-
# assistant_response = response.text
|
| 574 |
-
# else:
|
| 575 |
-
# assistant_response = "I'm sorry, I couldn't generate a response."
|
| 576 |
-
|
| 577 |
-
# st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|
| 578 |
-
|
| 579 |
-
# # Display assistant's response
|
| 580 |
-
# with st.chat_message("assistant"):
|
| 581 |
-
# st.markdown(assistant_response)
|
| 582 |
-
# else:
|
| 583 |
-
# # Restriction message
|
| 584 |
-
# restriction_msg = "**β οΈ This chatbot only responds to health-related topics.**\nPlease ask about Diabetes, Asthma, Stroke, Cardiovascular Disease, or Mental Health."
|
| 585 |
-
# st.session_state.chat_history.append({"role": "assistant", "content": restriction_msg})
|
| 586 |
-
|
| 587 |
-
# with st.chat_message("assistant"):
|
| 588 |
-
# st.markdown(restriction_msg)
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
# if selected == 'Checkbox-to-disease-predictor':
|
| 592 |
-
# # Load transformer model
|
| 593 |
-
# classifier = pipeline("zero-shot-classification", model="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
|
| 594 |
-
# # Use a pipeline as a high-level helper
|
| 595 |
-
|
| 596 |
-
# # from transformers import pipeline
|
| 597 |
-
|
| 598 |
-
# # pipe = pipeline("fill-mask", model="microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext")
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
# # Define symptoms for each disease
|
| 602 |
-
# diseases = {
|
| 603 |
-
# "Diabetes": ["Frequent urination", "Increased thirst", "Unexplained weight loss", "Fatigue", "Blurred vision"],
|
| 604 |
-
# "Hypertension": ["Headache", "Dizziness", "Chest pain", "Shortness of breath", "Nosebleeds"],
|
| 605 |
-
# "Obesity": ["Excess body fat", "Breathlessness", "Joint pain", "Increased sweating", "Low energy levels"],
|
| 606 |
-
# "Cardiovascular Disease": ["Chest pain", "Shortness of breath", "Dizziness", "Irregular heartbeat", "Fatigue"],
|
| 607 |
-
# "COPD": ["Chronic cough", "Shortness of breath", "Wheezing", "Chest tightness", "Frequent respiratory infections"],
|
| 608 |
-
# "Liver Disease": ["Jaundice", "Abdominal pain", "Swelling in legs", "Chronic fatigue", "Nausea"],
|
| 609 |
-
# "Kidney Disease": ["Swelling in legs", "Fatigue", "Loss of appetite", "Changes in urination", "Muscle cramps"],
|
| 610 |
-
# "Metabolic Syndrome": ["High blood sugar", "High blood pressure", "Increased waist size", "High cholesterol", "Fatigue"],
|
| 611 |
-
# "Osteoarthritis": ["Joint pain", "Stiffness", "Swelling", "Reduced flexibility", "Bone spurs"],
|
| 612 |
-
# "Gastroesophageal Reflux Disease": ["Heartburn", "Acid reflux", "Difficulty swallowing", "Chronic cough", "Sore throat"],
|
| 613 |
-
# "Depression": ["Persistent sadness", "Loss of interest", "Sleep disturbances", "Fatigue", "Difficulty concentrating"],
|
| 614 |
-
# "Sleep Apnea": ["Loud snoring", "Pauses in breathing", "Daytime drowsiness", "Morning headaches", "Irritability"],
|
| 615 |
-
# }
|
| 616 |
-
|
| 617 |
-
# # Streamlit UI
|
| 618 |
-
# st.title("π©Ί Hybrid Symptom Checker")
|
| 619 |
-
# st.write("Select your symptoms and get AI-powered predictions!")
|
| 620 |
-
|
| 621 |
-
# selected_symptoms = []
|
| 622 |
-
|
| 623 |
-
# # Create symptom selection with markdown separation and three columns
|
| 624 |
-
# disease_keys = list(diseases.keys())
|
| 625 |
-
|
| 626 |
-
# for i in range(0, len(disease_keys), 3):
|
| 627 |
-
# cols = st.columns(3)
|
| 628 |
-
# for j in range(3):
|
| 629 |
-
# if i + j < len(disease_keys):
|
| 630 |
-
# disease = disease_keys[i + j]
|
| 631 |
-
# with cols[j]:
|
| 632 |
-
# st.markdown(f"### {disease}")
|
| 633 |
-
# for symptom in diseases[disease]:
|
| 634 |
-
# if st.checkbox(symptom, key=f"{disease}_{symptom}"):
|
| 635 |
-
# selected_symptoms.append(symptom)
|
| 636 |
-
|
| 637 |
-
# if st.button("π Predict Disease"):
|
| 638 |
-
# if selected_symptoms:
|
| 639 |
-
# user_input = ", ".join(selected_symptoms) # Convert symptoms to text
|
| 640 |
-
|
| 641 |
-
# # 1οΈβ£ Custom Symptom Matching Approach
|
| 642 |
-
# disease_scores = {disease: 0 for disease in diseases.keys()}
|
| 643 |
-
# for disease, symptoms in diseases.items():
|
| 644 |
-
# matches = sum(symptom in selected_symptoms for symptom in symptoms)
|
| 645 |
-
# disease_scores[disease] = matches / len(symptoms) # Normalize by symptom count
|
| 646 |
-
|
| 647 |
-
# # Normalize to percentage
|
| 648 |
-
# symptom_match_scores = {d: round(score * 100, 2) for d, score in disease_scores.items()}
|
| 649 |
-
|
| 650 |
-
# # 2οΈβ£ AI Model Prediction
|
| 651 |
-
# ai_results = classifier(user_input, list(diseases.keys()))
|
| 652 |
-
# ai_scores = {ai_results["labels"][i]: round(ai_results["scores"][i] * 100, 2) for i in range(len(ai_results["labels"]))}
|
| 653 |
-
|
| 654 |
-
# # 3οΈβ£ Hybrid Score Calculation (Average of Both Scores)
|
| 655 |
-
# final_scores = {}
|
| 656 |
-
# for disease in diseases.keys():
|
| 657 |
-
# symptom_score = symptom_match_scores.get(disease, 0)
|
| 658 |
-
# ai_score = ai_scores.get(disease, 0)
|
| 659 |
-
# final_scores[disease] = round((symptom_score + ai_score) / 2, 2) # Averaging
|
| 660 |
-
|
| 661 |
-
# # Sort by final score
|
| 662 |
-
# sorted_final_scores = sorted(final_scores.items(), key=lambda x: x[1], reverse=True)
|
| 663 |
-
|
| 664 |
-
# # Display results
|
| 665 |
-
# st.write("### π¬ Possible Conditions (Hybrid Model Prediction):")
|
| 666 |
-
# for disease, score in sorted_final_scores:
|
| 667 |
-
# if score > 0:
|
| 668 |
-
# st.write(f"π©Ί {disease}: {score}% match")
|
| 669 |
-
# else:
|
| 670 |
-
# st.write("β οΈ Please select at least one symptom.")
|
| 671 |
|
| 672 |
|
| 673 |
import torch
|
|
|
|
| 126 |
However, this tool has **not undergone clinical validation** and should be used **for informational and educational purposes only**. It is not intended to serve as a substitute for professional medical diagnosis or treatment. Always consult a qualified healthcare provider for medical advice.
|
| 127 |
""")
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
if selected == 'Diabetes Prediction':
|
| 130 |
st.title('π©Έ Diabetes Prediction using ML (SVC)')
|
| 131 |
st.image("https://cdn-icons-png.flaticon.com/512/2919/2919950.png", width=100)
|
|
|
|
| 442 |
st.pyplot(fig)
|
| 443 |
|
| 444 |
|
| 445 |
+
|
| 446 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
|
| 448 |
|
| 449 |
import torch
|
discarded.txt
ADDED
|
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# st.markdown("""
|
| 2 |
+
# ## Welcome to the **Early Prediction of Health & Lifestyle Diseases**!
|
| 3 |
+
# This tool provides **early prediction and analysis** for various health conditions using **Machine Learning & NLP**.
|
| 4 |
+
|
| 5 |
+
# ### π₯ Available Features:
|
| 6 |
+
# - **π©Έ Disease Predictors**:
|
| 7 |
+
# - Diabetes Prediction
|
| 8 |
+
# - Hypertension Prediction
|
| 9 |
+
# - Cardiovascular Disease Prediction
|
| 10 |
+
# - Stroke Prediction
|
| 11 |
+
# - Asthma Prediction
|
| 12 |
+
# - Sleep Health Analysis
|
| 13 |
+
# # - **β
Checkbox-based Lifestyle Disease Predictor** using **BiomedNLP-PubMedBERT**
|
| 14 |
+
# - **π€ Medical Consultant** (Ask health-related questions)
|
| 15 |
+
# # - **π§ Mental Health Assessment**
|
| 16 |
+
# - **π Data Visualizer** (Analyze trends in health conditions)
|
| 17 |
+
|
| 18 |
+
# π Select an option from the sidebar to proceed!
|
| 19 |
+
# """)
|
| 20 |
+
|
| 21 |
+
# with st.expander("π Quick Start Guide"):
|
| 22 |
+
# st.write("""
|
| 23 |
+
# 1. Select a **health prediction model** from the sidebar.
|
| 24 |
+
# 2. Enter your details in the input fields.
|
| 25 |
+
# 3. Click **Predict** to get your result.
|
| 26 |
+
# 4. View personalized **health insights & recommendations**.
|
| 27 |
+
# """)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# # Disclaimer Section
|
| 31 |
+
# st.markdown("---")
|
| 32 |
+
# # st.markdown("""
|
| 33 |
+
# # **β οΈ Disclaimer:** This application has been developed using **real-world healthcare datasets** sourced from Kaggle:
|
| 34 |
+
|
| 35 |
+
# # - [Stroke Prediction Dataset](http://kaggle.com/code/chanchal24/stroke-prediction-using-python/input?select=healthcare-dataset-stroke-data.csv)
|
| 36 |
+
# # - [Asthma Analysis & Prediction](https://www.kaggle.com/code/bryamblasrimac/asthma-eda-prediction-f2score-85/input)
|
| 37 |
+
# # - [Diabetes Dataset](https://www.kaggle.com/datasets/mathchi/diabetes-data-set)
|
| 38 |
+
# # - [Cardiovascular Disease Dataset](https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset)
|
| 39 |
+
# # - [Sentiment Analysis for Mental Health](https://www.kaggle.com/datasets/suchintikasarkar/sentiment-analysis-for-mental-health)
|
| 40 |
+
# # - [Sleep Health Analysis](https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset)
|
| 41 |
+
# # \
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# st.markdown("""
|
| 45 |
+
# The predictions are generated using **machine learning models** trained on these datasets, incorporating **evaluation metrics and graphical insights** to enhance interpretability.
|
| 46 |
+
|
| 47 |
+
# However, this tool has **not undergone clinical validation** and should be used **for informational and educational purposes only**. It is not intended to serve as a substitute for professional medical diagnosis or treatment. Always consult a qualified healthcare provider for medical advice.
|
| 48 |
+
# """)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# if selected == 'Medical Consultant':
|
| 53 |
+
# st.title("π©Ί Medical Consultant Chatbot")
|
| 54 |
+
# st.markdown("### Discuss Your Health Concerns with Our AI-powered Chatbot")
|
| 55 |
+
# st.write("Ask about **Diabetes, Asthma, Stroke, Cardiovascular Disease, or Mental Health.**")
|
| 56 |
+
|
| 57 |
+
# genai.configure(api_key="AIzaSyAwyi9c5OdvLoWrv5lFi1jZDEYwuprQAKE")
|
| 58 |
+
|
| 59 |
+
# # Custom Styling
|
| 60 |
+
# st.markdown("""
|
| 61 |
+
# <style>
|
| 62 |
+
# .prompt-box {
|
| 63 |
+
# background-color: #000000;
|
| 64 |
+
# padding: 12px;
|
| 65 |
+
# border-radius: 8px;
|
| 66 |
+
# font-size: 14px;
|
| 67 |
+
# font-family: sans-serif;
|
| 68 |
+
# margin-bottom: 10px;
|
| 69 |
+
# border: 1px solid #dee2e6;
|
| 70 |
+
# text-align: center;
|
| 71 |
+
# }
|
| 72 |
+
# </style>
|
| 73 |
+
# """, unsafe_allow_html=True)
|
| 74 |
+
|
| 75 |
+
# st.markdown("#### π‘ Common Health Queries")
|
| 76 |
+
|
| 77 |
+
# prompt_options = [
|
| 78 |
+
# ("Diabetes β Diet", "What foods should I eat if I have diabetes?"),
|
| 79 |
+
# ("Diabetes β Exercise", "What type of workouts help control blood sugar levels?"),
|
| 80 |
+
# ("Asthma β Triggers", "What are common asthma triggers?"),
|
| 81 |
+
# ("Asthma β Treatment", "What are the best medications for asthma?"),
|
| 82 |
+
# ("Stroke β Symptoms", "What are the early warning signs of a stroke?"),
|
| 83 |
+
# ("Stroke β Prevention", "How can I reduce my risk of stroke?"),
|
| 84 |
+
# ("Cardiovascular β Heart Health", "How can I reduce my risk of heart disease?"),
|
| 85 |
+
# ("Cardiovascular β Blood Pressure", "What lifestyle changes can lower high blood pressure?"),
|
| 86 |
+
# ("Mental Health β Stress Management", "How can I manage stress effectively?"),
|
| 87 |
+
# ("Mental Health β Sleep Disorders", "What are the causes and treatments for sleep disorders?")
|
| 88 |
+
# ]
|
| 89 |
+
|
| 90 |
+
# # Display prompts in two columns (2 prompts per row)
|
| 91 |
+
# cols = st.columns(2)
|
| 92 |
+
# for i in range(0, len(prompt_options), 2):
|
| 93 |
+
# with cols[0]:
|
| 94 |
+
# if i < len(prompt_options):
|
| 95 |
+
# label, prompt = prompt_options[i]
|
| 96 |
+
# st.markdown(f"""<div class="prompt-box"><strong>{label}</strong><br>{prompt}</div>""", unsafe_allow_html=True)
|
| 97 |
+
|
| 98 |
+
# with cols[1]:
|
| 99 |
+
# if i+1 < len(prompt_options):
|
| 100 |
+
# label, prompt = prompt_options[i+1]
|
| 101 |
+
# st.markdown(f"""<div class="prompt-box"><strong>{label}</strong><br>{prompt}</div>""", unsafe_allow_html=True)
|
| 102 |
+
|
| 103 |
+
# # Initialize chat history if not present
|
| 104 |
+
# if "chat_history" not in st.session_state:
|
| 105 |
+
# st.session_state.chat_history = []
|
| 106 |
+
|
| 107 |
+
# # Display previous chat history
|
| 108 |
+
# for message in st.session_state.chat_history:
|
| 109 |
+
# with st.chat_message(message["role"]):
|
| 110 |
+
# st.markdown(message["content"])
|
| 111 |
+
|
| 112 |
+
# # User input field
|
| 113 |
+
# user_prompt = st.chat_input("Ask about Diabetes, Asthma, Stroke, Cardiovascular Disease, or Mental Health...")
|
| 114 |
+
|
| 115 |
+
# # List of allowed topics
|
| 116 |
+
# allowed_keywords = ["diabetes", "asthma", "stroke", "cardiovascular", "heart", "blood pressure",
|
| 117 |
+
# "mental health", "depression", "stress", "cholesterol", "sleep disorders"]
|
| 118 |
+
|
| 119 |
+
# if user_prompt:
|
| 120 |
+
# # Display user message
|
| 121 |
+
# st.chat_message("user").markdown(user_prompt)
|
| 122 |
+
# st.session_state.chat_history.append({"role": "user", "content": user_prompt})
|
| 123 |
+
|
| 124 |
+
# # Restriction: Only process if related to health topics
|
| 125 |
+
# if any(keyword in user_prompt.lower() for keyword in allowed_keywords):
|
| 126 |
+
# model = genai.GenerativeModel("gemini-2.0-flash")
|
| 127 |
+
# response = model.generate_content(user_prompt)
|
| 128 |
+
|
| 129 |
+
# if response and hasattr(response, "text"):
|
| 130 |
+
# assistant_response = response.text
|
| 131 |
+
# else:
|
| 132 |
+
# assistant_response = "I'm sorry, I couldn't generate a response."
|
| 133 |
+
|
| 134 |
+
# st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|
| 135 |
+
|
| 136 |
+
# # Display assistant's response
|
| 137 |
+
# with st.chat_message("assistant"):
|
| 138 |
+
# st.markdown(assistant_response)
|
| 139 |
+
# else:
|
| 140 |
+
# # Restriction message
|
| 141 |
+
# restriction_msg = "**β οΈ This chatbot only responds to health-related topics.**\nPlease ask about Diabetes, Asthma, Stroke, Cardiovascular Disease, or Mental Health."
|
| 142 |
+
# st.session_state.chat_history.append({"role": "assistant", "content": restriction_msg})
|
| 143 |
+
|
| 144 |
+
# with st.chat_message("assistant"):
|
| 145 |
+
# st.markdown(restriction_msg)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# if selected == 'Checkbox-to-disease-predictor':
|
| 150 |
+
# # Load transformer model
|
| 151 |
+
# classifier = pipeline("zero-shot-classification", model="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
|
| 152 |
+
# # Use a pipeline as a high-level helper
|
| 153 |
+
|
| 154 |
+
# # from transformers import pipeline
|
| 155 |
+
|
| 156 |
+
# # pipe = pipeline("fill-mask", model="microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext")
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
# # Define symptoms for each disease
|
| 160 |
+
# diseases = {
|
| 161 |
+
# "Diabetes": ["Frequent urination", "Increased thirst", "Unexplained weight loss", "Fatigue", "Blurred vision"],
|
| 162 |
+
# "Hypertension": ["Headache", "Dizziness", "Chest pain", "Shortness of breath", "Nosebleeds"],
|
| 163 |
+
# "Obesity": ["Excess body fat", "Breathlessness", "Joint pain", "Increased sweating", "Low energy levels"],
|
| 164 |
+
# "Cardiovascular Disease": ["Chest pain", "Shortness of breath", "Dizziness", "Irregular heartbeat", "Fatigue"],
|
| 165 |
+
# "COPD": ["Chronic cough", "Shortness of breath", "Wheezing", "Chest tightness", "Frequent respiratory infections"],
|
| 166 |
+
# "Liver Disease": ["Jaundice", "Abdominal pain", "Swelling in legs", "Chronic fatigue", "Nausea"],
|
| 167 |
+
# "Kidney Disease": ["Swelling in legs", "Fatigue", "Loss of appetite", "Changes in urination", "Muscle cramps"],
|
| 168 |
+
# "Metabolic Syndrome": ["High blood sugar", "High blood pressure", "Increased waist size", "High cholesterol", "Fatigue"],
|
| 169 |
+
# "Osteoarthritis": ["Joint pain", "Stiffness", "Swelling", "Reduced flexibility", "Bone spurs"],
|
| 170 |
+
# "Gastroesophageal Reflux Disease": ["Heartburn", "Acid reflux", "Difficulty swallowing", "Chronic cough", "Sore throat"],
|
| 171 |
+
# "Depression": ["Persistent sadness", "Loss of interest", "Sleep disturbances", "Fatigue", "Difficulty concentrating"],
|
| 172 |
+
# "Sleep Apnea": ["Loud snoring", "Pauses in breathing", "Daytime drowsiness", "Morning headaches", "Irritability"],
|
| 173 |
+
# }
|
| 174 |
+
|
| 175 |
+
# # Streamlit UI
|
| 176 |
+
# st.title("π©Ί Hybrid Symptom Checker")
|
| 177 |
+
# st.write("Select your symptoms and get AI-powered predictions!")
|
| 178 |
+
|
| 179 |
+
# selected_symptoms = []
|
| 180 |
+
|
| 181 |
+
# # Create symptom selection with markdown separation and three columns
|
| 182 |
+
# disease_keys = list(diseases.keys())
|
| 183 |
+
|
| 184 |
+
# for i in range(0, len(disease_keys), 3):
|
| 185 |
+
# cols = st.columns(3)
|
| 186 |
+
# for j in range(3):
|
| 187 |
+
# if i + j < len(disease_keys):
|
| 188 |
+
# disease = disease_keys[i + j]
|
| 189 |
+
# with cols[j]:
|
| 190 |
+
# st.markdown(f"### {disease}")
|
| 191 |
+
# for symptom in diseases[disease]:
|
| 192 |
+
# if st.checkbox(symptom, key=f"{disease}_{symptom}"):
|
| 193 |
+
# selected_symptoms.append(symptom)
|
| 194 |
+
|
| 195 |
+
# if st.button("π Predict Disease"):
|
| 196 |
+
# if selected_symptoms:
|
| 197 |
+
# user_input = ", ".join(selected_symptoms) # Convert symptoms to text
|
| 198 |
+
|
| 199 |
+
# # 1οΈβ£ Custom Symptom Matching Approach
|
| 200 |
+
# disease_scores = {disease: 0 for disease in diseases.keys()}
|
| 201 |
+
# for disease, symptoms in diseases.items():
|
| 202 |
+
# matches = sum(symptom in selected_symptoms for symptom in symptoms)
|
| 203 |
+
# disease_scores[disease] = matches / len(symptoms) # Normalize by symptom count
|
| 204 |
+
|
| 205 |
+
# # Normalize to percentage
|
| 206 |
+
# symptom_match_scores = {d: round(score * 100, 2) for d, score in disease_scores.items()}
|
| 207 |
+
|
| 208 |
+
# # 2οΈβ£ AI Model Prediction
|
| 209 |
+
# ai_results = classifier(user_input, list(diseases.keys()))
|
| 210 |
+
# ai_scores = {ai_results["labels"][i]: round(ai_results["scores"][i] * 100, 2) for i in range(len(ai_results["labels"]))}
|
| 211 |
+
|
| 212 |
+
# # 3οΈβ£ Hybrid Score Calculation (Average of Both Scores)
|
| 213 |
+
# final_scores = {}
|
| 214 |
+
# for disease in diseases.keys():
|
| 215 |
+
# symptom_score = symptom_match_scores.get(disease, 0)
|
| 216 |
+
# ai_score = ai_scores.get(disease, 0)
|
| 217 |
+
# final_scores[disease] = round((symptom_score + ai_score) / 2, 2) # Averaging
|
| 218 |
+
|
| 219 |
+
# # Sort by final score
|
| 220 |
+
# sorted_final_scores = sorted(final_scores.items(), key=lambda x: x[1], reverse=True)
|
| 221 |
+
|
| 222 |
+
# # Display results
|
| 223 |
+
# st.write("### π¬ Possible Conditions (Hybrid Model Prediction):")
|
| 224 |
+
# for disease, score in sorted_final_scores:
|
| 225 |
+
# if score > 0:
|
| 226 |
+
# st.write(f"π©Ί {disease}: {score}% match")
|
| 227 |
+
# else:
|
| 228 |
+
# st.write("β οΈ Please select at least one symptom.")
|