AIteen's picture
Update app.py
cd4dded verified
raw
history blame
1.88 kB
import gradio as gr
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def last_token_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
def get_similarity_scores(queries: list, passages: list, model, tokenizer):
tokenizer.add_eos_token = True
max_length = 4096
input_texts = queries + passages
batch_dict = tokenizer(input_texts, max_length=max_length - 1, padding=True, truncation=True, return_tensors="pt")
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:len(queries)] @ embeddings[len(queries):].T) * 100
return scores.tolist()
def similarity_ui(keyNames:list, fields:list):
task = 'Given a keyName, find similarity score against provided fields'
queries = keyNames
passages = fields
scores = get_similarity_scores(queries, passages, model, tokenizer)
return {'Similarity Scores': scores}
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('Salesforce/SFR-Embedding-Mistral')
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Mistral')
# Create Gradio Interface
gr.Interface(
fn=similarity_ui,
inputs="text", "text",
outputs="text",
title="Similarity Score Calculator",
description="Enter a Key Name and 3 Fields to find similarity scores"
).launch()