LukeOLuck's picture
stop using zip
91f8084
raw
history blame
3.27 kB
import gradio as gr
import os
import torch
import pickle
import gzip
from torch.nn.functional import cosine_similarity
from model import create_semantic_ranking_model
from timeit import default_timer as timer
from typing import Tuple, Dict
### Load example texts ###
questions_texts = []
with open("questions_texts.txt", "r") as file:
questions_texts = [line.strip() for line in file.readlines()]
answers_texts = []
with open("answers_texts.txt", "r") as file:
answers_texts = [line.strip() for line in file.readlines()]
### Model and transforms preparation ###
# Create model and tokenizer
model, tokenizer = create_semantic_ranking_model()
# Load saved weights
model.load_state_dict(
torch.load(f="all-MiniLM-L6-v2.pth",
map_location=torch.device("cpu")) # load to CPU
)
# Load the embeddings
with gzip.open('response_embeddings.pkl.gz', 'rb') as f:
response_embeddings = pickle.load(f)
# Load the response list
with gzip.open('response_list.pkl.gz', 'rb') as f:
response_list = pickle.load(f)
### Predict function ###
def predict(text) -> Tuple[Dict, float]:
# Start a timer
start_time = timer()
# Set the model to eval
model.eval()
# Set up the inputs
tokenized_inputs = tokenizer(text, return_tensors="pt", max_length=128, truncation=True, padding="max_length")
# Get input_embeddings
with torch.inference_mode():
input_embeddings = model(**tokenized_inputs)
# Compute similarity scores
similarity_scores = cosine_similarity(input_embeddings.unsqueeze(1), response_embeddings.unsqueeze(0), dim=2)
top_responses_indices = torch.topk(similarity_scores, k=5, dim=1).indices.squeeze()
# Retrieve the actual response texts
top_responses = [response_list[idx] for idx in top_responses_indices]
# Get actual response
actual_response = None
for i, question in enumerate(questions_texts):
if text.strip() == question.strip():
actual_response = answers_texts[i]
break
# Calculate pred time
end_time = timer()
pred_time = round(end_time - start_time, 4)
# Return pred dict and pred time
return {"Top Responses": top_responses}, actual_response, pred_time
### 4. Gradio app ###
# Create title, description and article
title = "Semantic Ranking with MiniLM-L6-v2"
description = "[A MiniLM-L6-H384-uncased MiniLM based model](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) sentence embedding model trained to rank results from [HuggingFace πŸ€— Hello-SimpleAI/HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3). [Source Code Found Here](https://colab.research.google.com/drive/1o5a9zH1TxzaxLKV5AFUhZE8L8yMnO9Jw?usp=sharing)"
article = "Built with [Gradio](https://github.com/gradio-app/gradio) and [PyTorch](https://pytorch.org/). [Source Code Found Here](https://colab.research.google.com/drive/1o5a9zH1TxzaxLKV5AFUhZE8L8yMnO9Jw?usp=sharing)"
# Create the Gradio demo
demo = gr.Interface(fn=predict,
inputs=gr.Textbox(lines=2, placeholder="Type your text here..."),
outputs=[gr.JSON(label="Top Responses"),
gr.Textbox(label="Actual Response"),
gr.Number(label="Prediction time (s)")],
examples=questions_texts,
title=title,
description=description,
article=article)
# Launch the demo
demo.launch()