Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import json | |
from model import create_flan_T5_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
### Load example texts ### | |
with open("data.json", 'r', encoding='utf-8') as f: | |
loaded_data = json.load(f) | |
questions_texts = loaded_data["questions"] | |
system_prompts = loaded_data["system_prompts"] | |
response_texts = loaded_data["responses"] | |
### Model and transforms preparation ### | |
# Create model and tokenizer | |
model, tokenizer = create_flan_T5_model() | |
# Load saved weights | |
model.load_state_dict( | |
torch.load(f="flan-t5-small.pth", | |
map_location=torch.device("cpu")) # load to CPU | |
) | |
### Predict function ### | |
def predict(selection: str) -> Tuple[Dict, str, float]: | |
start_time = timer() | |
model.eval() | |
# Extract the question part from the selection | |
# Assuming the format "Prompt: {prompt} | Question: {question}" | |
question = selection.split("| Question: ")[1] | |
# Find the index of the question | |
idx = questions_texts.index(question) | |
# Now, use the index to get the system prompt and actual response | |
system_prompt = system_prompts[idx] | |
response = response_texts[idx] | |
input_text = f"context: {system_prompt} question: {question}" | |
model_inputs = tokenizer(input_text, return_tensors="pt", max_length=512, padding='max_length', truncation=True).to(device) | |
with torch.inference_mode(): | |
predicted_token_ids = model.generate(input_ids=model_inputs['input_ids'], attention_mask=model_inputs['attention_mask'], max_length=128) | |
result = tokenizer.decode(predicted_token_ids[0], skip_special_tokens=True) | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
return {"Predicted Answer": result}, {"Actual Answer": response}, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article | |
title = "Prompt Answering with Google's flan-t5-small" | |
description = "[google/flan-t5-small based model](https://huggingface.co/google/flan-t5-small) LLM model trained to take prompts and tasks on the [HuggingFace π€ Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca). [Source Code Found Here](https://colab.research.google.com/drive/1sIScjt_hyNegHC15Y76JVXEOUvdD_2dh?usp=sharing)" | |
article = "Built with [Gradio](https://github.com/gradio-app/gradio) and [PyTorch](https://pytorch.org/). [Source Code Found Here](https://colab.research.google.com/drive/1sIScjt_hyNegHC15Y76JVXEOUvdD_2dh?usp=sharing)" | |
dropdown_choices = [f"Prompt: {prompt} | Question: {question}" for prompt, question in zip(system_prompts, questions_texts)] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Dropdown(choices=dropdown_choices, label="Select a Question and Prompt"), | |
outputs=[ | |
gr.JSON(label="Predicted Answer"), | |
gr.Textbox(label="Actual Answer"), | |
gr.Number(label="Prediction time (s)") | |
], | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo | |
demo.launch() | |