LuisV
changing default llm
be39a5a
import gradio as gr
import os, sys
from prompting import promptingutils
from imageprocessing import imageprocessingtools
from openai import OpenAI
from prompting.promptingutils import DEFAULT_N_SAMPLES, DEFAULT_OBJECT_THRESHOLD, DEFAULT_RANDOM_STATE
AVAILABLE_LLMS = [
"mistral-7b-instruct",
"vicuna-7b",
"llama-7b-chat",
"vicuna-13b",
]
DEFAULT_TEMPERATURE = 0
LLAMA_API_TOKEN = os.environ["LLAMA_API_TOKEN"]
client = OpenAI(
api_key = LLAMA_API_TOKEN,
base_url = "https://api.llama-api.com"
)
def caption_artwork(
image_filepath: os.PathLike,
llm :str,
temperature = DEFAULT_TEMPERATURE,
items_threshold = DEFAULT_OBJECT_THRESHOLD,
random_state = DEFAULT_RANDOM_STATE,
n_samples_per_emotion = DEFAULT_N_SAMPLES
)-> tuple:
all_information = imageprocessingtools.extract_all_information_from_image(image_filepath)
emotion = all_information["emotion"]
colors_list = all_information["colors_list"]
objects_and_probs = all_information["objects_and_probs"]
objects_list = promptingutils.filter_items(objects_and_probs, items_threshold=items_threshold)
user_prompt = promptingutils.get_user_prompt(
colors_list=colors_list,
objects_list=objects_list,
emotion=emotion,
n_samples_per_emotion=n_samples_per_emotion,
random_state=random_state,
object_threshold=items_threshold
)
response = client.chat.completions.create(
model = llm,
messages = [
{"role": "system" , "content": "Assistant is a large language model trained by OpenAI."},
{"role": "user" , "content": user_prompt}
],
temperature = temperature
)
commentary_str = response.choices[0].message.content
colors_str = ", ".join(colors_list)
objects_str = ", ".join(objects_list)
emotion_str = emotion
return (emotion_str, colors_str, objects_str, commentary_str)
with gr.Blocks() as demo:
with gr.Column():
gr.HTML("""
<h2 style="text-align: center;">
LLMs talk about art!
</h2>
<p style="text-align: center;"></p>
""")
print("Checking for image")
test_image_name = "1665_Girl_with_a_Pearl_Earring.jpg"
print(os.path.isfile(test_image_name))
print(os.path.isfile(os.path.join(os.getcwd(), test_image_name)))
print(os.path.isfile(os.path.join(os.path.dirname(__file__), test_image_name)))
gr_image = gr.Image(
label= "An artwork: ",
type = "filepath",
#value= "https://d3vjn2zm46gms2.cloudfront.net/blogs/2015/05/27010344/Whistler27s-Mother_small.jpg"
#value= os.path.join("imageprocessing", test_image_name)
#"https://upload.wikimedia.org/wikipedia/commons/0/0f/1665_Girl_with_a_Pearl_Earring.jpg"
#os.path.join(
#os.getcwd(),
#os.path.dirname(__file__),
#"1665_Girl_with_a_Pearl_Earring.jpg"
#)
)
gr_model = gr.Dropdown(
label= "A Large Language Model",
choices = AVAILABLE_LLMS,
value = AVAILABLE_LLMS[0]
)
btn = gr.Button(value="Submit your image!")
gr_emotion = gr.Textbox(
label = "Evoked emotion: ",
)
gr_colors = gr.Textbox(
label = "Main colors: ",
)
gr_objects = gr.Textbox(
label = "Main objects present: ",
)
gr_commentary = gr.Textbox(
label = "Commentary on the artwork:",
)
btn.click(
caption_artwork,
inputs=[gr_image, gr_model],
outputs=[gr_emotion, gr_colors, gr_objects, gr_commentary]
)
"""
def greet(name):
return "Hello " + name + "!!"
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
"""
if __name__ == "__main__":
demo.launch(allowed_paths = [os.path.dirname(__file__)])