rts-commander / model_manager.py
Luigi's picture
perf: Apply all thread optimizations + complete documentation
8e1770a
"""
Shared LLM Model Manager
Single Qwen2.5-Coder-1.5B instance shared by NL translator and AI analysis
Prevents duplicate model loading and memory waste
OPTIMIZED FOR NON-BLOCKING OPERATION:
- Async request submission (returns immediately)
- Result polling (check if ready)
- Request cancellation if game loop needs to continue
"""
import threading
import queue
import time
from typing import Optional, Dict, Any, List, Tuple
from pathlib import Path
from enum import Enum
try:
from llama_cpp import Llama
except ImportError:
Llama = None
class RequestStatus(Enum):
"""Status of an async request"""
PENDING = "pending" # In queue, not yet processed
PROCESSING = "processing" # Currently being processed
COMPLETED = "completed" # Done, result available
FAILED = "failed" # Error occurred
CANCELLED = "cancelled" # Request was cancelled
class AsyncRequest:
"""Represents an async LLM request"""
def __init__(self, request_id: str, messages: List[Dict[str, str]],
max_tokens: int, temperature: float):
self.request_id = request_id
self.messages = messages
self.max_tokens = max_tokens
self.temperature = temperature
self.status = RequestStatus.PENDING
self.result_text: Optional[str] = None
self.error_message: Optional[str] = None
self.submitted_at = time.time()
self.completed_at: Optional[float] = None
class SharedModelManager:
"""Thread-safe singleton manager for shared LLM model"""
_instance = None
_lock = threading.Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
# Only initialize once
if hasattr(self, '_initialized'):
return
self._initialized = True
self.model = None # type: Optional[Llama]
self.model_path = None # type: Optional[str]
self.model_loaded = False
self.last_error = None # type: Optional[str]
# Async request management
self._request_queue = queue.Queue() # type: queue.Queue[AsyncRequest]
self._requests = {} # type: Dict[str, AsyncRequest]
self._requests_lock = threading.Lock()
self._worker_thread = None # type: Optional[threading.Thread]
self._stop_worker = False
self._current_request_id: Optional[str] = None # Track what's being processed
def load_model(self, model_path: str = "qwen2.5-coder-1.5b-instruct-q4_0.gguf") -> tuple[bool, Optional[str]]:
"""Load the shared model (thread-safe)"""
with self._lock:
if self.model_loaded and self.model_path == model_path:
return True, None
if Llama is None:
self.last_error = "llama-cpp-python not installed"
return False, self.last_error
try:
# Unload previous model if different
if self.model is not None and self.model_path != model_path:
del self.model
self.model = None
self.model_loaded = False
# Load new model
# Try /tmp/rts first (HuggingFace Space download location)
tmp_path = Path("/tmp/rts") / model_path
local_path = Path(__file__).parent / model_path
if tmp_path.exists():
full_path = tmp_path
elif local_path.exists():
full_path = local_path
else:
self.last_error = f"Model file not found: {model_path} (checked /tmp/rts/ and {Path(__file__).parent})"
return False, self.last_error
self.model = Llama(
model_path=str(full_path),
n_ctx=2048, # Reduced from 4096 for faster processing
n_threads=1, # Prompt processing: 1 thread
n_threads_batch=1, # Token generation: 1 thread (CRITICAL!)
n_batch=256, # Increased from 128 for better throughput
verbose=False,
chat_format='qwen'
)
self.model_path = model_path
self.model_loaded = True
self.last_error = None
# Start worker thread if not running
if self._worker_thread is None or not self._worker_thread.is_alive():
self._stop_worker = False
self._worker_thread = threading.Thread(target=self._process_requests, daemon=True)
self._worker_thread.start()
return True, None
except Exception as e:
self.last_error = f"Failed to load model: {str(e)}"
self.model_loaded = False
return False, self.last_error
def _process_requests(self):
"""Worker thread to process model requests sequentially (async-friendly)"""
# Lower thread priority so game gets CPU preference
import os
try:
os.nice(10) # Lower priority (0=normal, 19=lowest)
print("📉 LLM worker thread priority lowered (nice +10)")
except Exception as e:
print(f"⚠️ Could not lower thread priority: {e}")
while not self._stop_worker:
try:
# Get request with timeout to check stop flag
try:
request = self._request_queue.get(timeout=0.5)
except queue.Empty:
continue
if not isinstance(request, AsyncRequest):
continue
# Mark as processing
with self._requests_lock:
self._current_request_id = request.request_id
request.status = RequestStatus.PROCESSING
try:
# Check model is loaded
if not self.model_loaded or self.model is None:
request.status = RequestStatus.FAILED
request.error_message = 'Model not loaded'
request.completed_at = time.time()
continue
# Process request (this is the blocking part)
start_time = time.time()
response = self.model.create_chat_completion(
messages=request.messages,
max_tokens=request.max_tokens,
temperature=request.temperature,
stream=False
)
elapsed = time.time() - start_time
# Extract text from response
if response and 'choices' in response and len(response['choices']) > 0:
text = response['choices'][0].get('message', {}).get('content', '')
request.status = RequestStatus.COMPLETED
request.result_text = text
request.completed_at = time.time()
print(f"✅ LLM request completed in {elapsed:.2f}s")
else:
request.status = RequestStatus.FAILED
request.error_message = 'Empty response from model'
request.completed_at = time.time()
except Exception as e:
request.status = RequestStatus.FAILED
request.error_message = f"Model inference error: {str(e)}"
request.completed_at = time.time()
print(f"❌ LLM request failed: {e}")
finally:
with self._requests_lock:
self._current_request_id = None
except Exception as e:
print(f"❌ Worker thread error: {e}")
time.sleep(0.1)
def submit_async(self, messages: List[Dict[str, str]], max_tokens: int = 256,
temperature: float = 0.7) -> str:
"""
Submit request asynchronously (non-blocking)
Args:
messages: List of {role, content} dicts
max_tokens: Maximum tokens to generate
temperature: Sampling temperature
Returns:
request_id: Use this to poll for results with get_result()
"""
if not self.model_loaded:
raise RuntimeError("Model not loaded. Call load_model() first.")
# Create unique request ID
request_id = f"req_{int(time.time() * 1000000)}_{id(threading.current_thread())}"
# Create request object
request = AsyncRequest(
request_id=request_id,
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
# Register and submit
with self._requests_lock:
self._requests[request_id] = request
self._request_queue.put(request)
print(f"📤 LLM request submitted: {request_id}")
return request_id
def get_result(self, request_id: str, remove: bool = True) -> Tuple[RequestStatus, Optional[str], Optional[str]]:
"""
Check result of async request (non-blocking)
Args:
request_id: ID returned by submit_async()
remove: If True, remove request after getting result
Returns:
(status, result_text, error_message)
"""
with self._requests_lock:
request = self._requests.get(request_id)
if request is None:
return RequestStatus.FAILED, None, "Request not found (may have been cleaned up)"
# Return current status
status = request.status
result_text = request.result_text
error_message = request.error_message
# Cleanup if requested and completed
if remove and status in [RequestStatus.COMPLETED, RequestStatus.FAILED, RequestStatus.CANCELLED]:
with self._requests_lock:
self._requests.pop(request_id, None)
return status, result_text, error_message
def cancel_request(self, request_id: str) -> bool:
"""
Cancel a pending request (cannot cancel if already processing)
Returns:
True if cancelled, False if already processing/completed
"""
with self._requests_lock:
request = self._requests.get(request_id)
if request is None:
return False
# Can only cancel pending requests
if request.status == RequestStatus.PENDING:
request.status = RequestStatus.CANCELLED
request.completed_at = time.time()
return True
return False
def generate(self, messages: List[Dict[str, str]], max_tokens: int = 256,
temperature: float = 0.7, max_wait: float = 300.0) -> tuple[bool, Optional[str], Optional[str]]:
"""
Generate response from model (blocking, for backward compatibility)
NO TIMEOUT - waits for inference to complete naturally.
Only cancelled if superseded by new request of same type.
max_wait is a safety limit only.
Args:
messages: List of {role, content} dicts
max_tokens: Maximum tokens to generate
temperature: Sampling temperature
max_wait: Safety limit in seconds (default 5min)
Returns:
(success, response_text, error_message)
"""
try:
# Submit async
request_id = self.submit_async(messages, max_tokens, temperature)
# Poll for result (no timeout, wait for completion)
start_time = time.time()
while time.time() - start_time < max_wait: # Safety limit only
status, result_text, error_message = self.get_result(request_id, remove=False)
if status == RequestStatus.COMPLETED:
# Cleanup and return
self.get_result(request_id, remove=True)
return True, result_text, None
elif status == RequestStatus.FAILED:
# Cleanup and return
self.get_result(request_id, remove=True)
return False, None, error_message
elif status == RequestStatus.CANCELLED:
self.get_result(request_id, remove=True)
return False, None, "Request was cancelled by newer request"
# Still pending/processing, wait a bit
time.sleep(0.1)
# Safety limit reached (model may be stuck)
return False, None, f"Request exceeded safety limit ({max_wait}s) - model may be stuck"
except Exception as e:
return False, None, f"Error: {str(e)}"
def cleanup_old_requests(self, max_age: float = 300.0):
"""
Remove completed/failed requests older than max_age seconds
Args:
max_age: Maximum age in seconds (default 5 minutes)
"""
now = time.time()
with self._requests_lock:
to_remove = []
for request_id, request in self._requests.items():
if request.completed_at is not None:
age = now - request.completed_at
if age > max_age:
to_remove.append(request_id)
for request_id in to_remove:
self._requests.pop(request_id, None)
if to_remove:
print(f"🧹 Cleaned up {len(to_remove)} old LLM requests")
def get_queue_status(self) -> Dict[str, Any]:
"""Get current queue status for monitoring"""
with self._requests_lock:
pending = sum(1 for r in self._requests.values() if r.status == RequestStatus.PENDING)
processing = sum(1 for r in self._requests.values() if r.status == RequestStatus.PROCESSING)
completed = sum(1 for r in self._requests.values() if r.status == RequestStatus.COMPLETED)
failed = sum(1 for r in self._requests.values() if r.status == RequestStatus.FAILED)
return {
'queue_size': self._request_queue.qsize(),
'total_requests': len(self._requests),
'pending': pending,
'processing': processing,
'completed': completed,
'failed': failed,
'current_request': self._current_request_id
}
def shutdown(self):
"""Cleanup resources"""
self._stop_worker = True
if self._worker_thread is not None:
self._worker_thread.join(timeout=2.0)
with self._lock:
if self.model is not None:
del self.model
self.model = None
self.model_loaded = False
# Global singleton instance
_shared_model_manager = SharedModelManager()
def get_shared_model() -> SharedModelManager:
"""Get the shared model manager singleton"""
return _shared_model_manager