Spaces:
Paused
Paused
| #!/usr/bin/env python3 | |
| """ | |
| ZipVoice Gradio Web Interface for HuggingFace Spaces | |
| Updated for Gradio 5.47.0 compatibility | |
| """ | |
| import os | |
| import sys | |
| import tempfile | |
| import gradio as gr | |
| import torch | |
| from pathlib import Path | |
| import spaces | |
| import whisper | |
| # Add current directory to Python path for local zipvoice package | |
| sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) | |
| # Import ZipVoice components | |
| from zipvoice.models.zipvoice import ZipVoice | |
| from zipvoice.models.zipvoice_distill import ZipVoiceDistill | |
| from zipvoice.tokenizer.tokenizer import EmiliaTokenizer | |
| from zipvoice.utils.checkpoint import load_checkpoint | |
| from zipvoice.utils.feature import VocosFbank | |
| from zipvoice.bin.infer_zipvoice import generate_sentence | |
| from lhotse.utils import fix_random_seed | |
| # Global variables for caching models | |
| _models_cache = {} | |
| _tokenizer_cache = None | |
| _vocoder_cache = None | |
| _feature_extractor_cache = None | |
| _whisper_model_cache = None | |
| def load_models_and_components(model_name: str): | |
| """Load and cache models, tokenizer, vocoder, and feature extractor.""" | |
| global _models_cache, _tokenizer_cache, _vocoder_cache, _feature_extractor_cache | |
| # Set device (GPU if available for Spaces GPU acceleration) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| if model_name not in _models_cache: | |
| print(f"Loading {model_name} model...") | |
| # Model directory mapping | |
| model_dir_map = { | |
| "zipvoice": "zipvoice", | |
| "zipvoice_distill": "zipvoice_distill", | |
| } | |
| huggingface_repo = "k2-fsa/ZipVoice" | |
| # Download model files from HuggingFace | |
| from huggingface_hub import hf_hub_download | |
| model_ckpt = hf_hub_download( | |
| huggingface_repo, filename=f"{model_dir_map[model_name]}/model.pt" | |
| ) | |
| model_config_path = hf_hub_download( | |
| huggingface_repo, filename=f"{model_dir_map[model_name]}/model.json" | |
| ) | |
| token_file = hf_hub_download( | |
| huggingface_repo, filename=f"{model_dir_map[model_name]}/tokens.txt" | |
| ) | |
| # Load tokenizer (cache it) | |
| if _tokenizer_cache is None: | |
| _tokenizer_cache = EmiliaTokenizer(token_file=token_file) | |
| tokenizer = _tokenizer_cache | |
| tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id} | |
| # Load model configuration | |
| import json | |
| with open(model_config_path, "r") as f: | |
| model_config = json.load(f) | |
| # Create model | |
| if model_name == "zipvoice": | |
| model = ZipVoice(**model_config["model"], **tokenizer_config) | |
| else: | |
| model = ZipVoiceDistill(**model_config["model"], **tokenizer_config) | |
| # Load model weights | |
| load_checkpoint(filename=model_ckpt, model=model, strict=True) | |
| model = model.to(device) | |
| model.eval() | |
| _models_cache[model_name] = model | |
| # Load vocoder (cache it) | |
| if _vocoder_cache is None: | |
| from vocos import Vocos | |
| _vocoder_cache = Vocos.from_pretrained("charactr/vocos-mel-24khz") | |
| _vocoder_cache = _vocoder_cache.to(device) | |
| _vocoder_cache.eval() | |
| # Load feature extractor (cache it) | |
| if _feature_extractor_cache is None: | |
| _feature_extractor_cache = VocosFbank() | |
| return (_models_cache[model_name], _tokenizer_cache, | |
| _vocoder_cache, _feature_extractor_cache, | |
| model_config["feature"]["sampling_rate"]) | |
| def load_whisper_model(): | |
| """Load and cache Whisper model for transcription.""" | |
| global _whisper_model_cache | |
| if _whisper_model_cache is None: | |
| print("Loading Whisper model for transcription...") | |
| # Use base model for faster transcription | |
| _whisper_model_cache = whisper.load_model("base") | |
| return _whisper_model_cache | |
| def transcribe_audio_whisper(audio_file): | |
| """Transcribe audio file using Whisper.""" | |
| if audio_file is None: | |
| return "Error: Please upload an audio file first." | |
| try: | |
| # Load Whisper model | |
| model = load_whisper_model() | |
| # Transcribe the audio | |
| result = model.transcribe(audio_file, language="en") | |
| return result["text"].strip() | |
| except Exception as e: | |
| return f"Error during transcription: {str(e)}" | |
| def synthesize_speech_gradio( | |
| text: str, | |
| prompt_audio_file, | |
| prompt_text: str, | |
| model_name: str, | |
| speed: float | |
| ): | |
| """Synthesize speech using ZipVoice for Gradio interface.""" | |
| if not text.strip(): | |
| return None, "Error: Please enter text to synthesize." | |
| if prompt_audio_file is None: | |
| return None, "Error: Please upload a prompt audio file." | |
| if not prompt_text.strip(): | |
| return None, "Error: Please enter the transcription of the prompt audio." | |
| try: | |
| # Set random seed for reproducibility | |
| fix_random_seed(666) | |
| # Load models and components | |
| model, tokenizer, vocoder, feature_extractor, sampling_rate = load_models_and_components(model_name) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Save uploaded audio to temporary file | |
| with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio: | |
| temp_audio_path = temp_audio.name | |
| with open(temp_audio_path, "wb") as f: | |
| f.write(prompt_audio_file) | |
| # Create temporary output file | |
| with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_output: | |
| output_path = temp_output.name | |
| print(f"Synthesizing: '{text}' using {model_name}") | |
| print(f"Prompt: {prompt_text}") | |
| print(f"Speed: {speed}") | |
| # Generate speech | |
| with torch.inference_mode(): | |
| metrics = generate_sentence( | |
| save_path=output_path, | |
| prompt_text=prompt_text, | |
| prompt_wav=temp_audio_path, | |
| text=text, | |
| model=model, | |
| vocoder=vocoder, | |
| tokenizer=tokenizer, | |
| feature_extractor=feature_extractor, | |
| device=device, | |
| num_step=16 if model_name == "zipvoice" else 8, | |
| guidance_scale=1.0 if model_name == "zipvoice" else 3.0, | |
| speed=speed, | |
| t_shift=0.5, | |
| target_rms=0.1, | |
| feat_scale=0.1, | |
| sampling_rate=sampling_rate, | |
| max_duration=100, | |
| remove_long_sil=False, | |
| ) | |
| # Read the generated audio file | |
| with open(output_path, "rb") as f: | |
| audio_data = f.read() | |
| # Clean up temporary files | |
| os.unlink(temp_audio_path) | |
| os.unlink(output_path) | |
| success_msg = f"Synthesis completed! Duration: {metrics['wav_seconds']:.2f}s, RTF: {metrics['rtf']:.2f}" | |
| return audio_data, success_msg | |
| except Exception as e: | |
| error_msg = f"Error during synthesis: {str(e)}" | |
| print(error_msg) | |
| return None, error_msg | |
| def create_gradio_interface(): | |
| """Create the Gradio web interface.""" | |
| # Custom CSS for better styling | |
| css = """ | |
| .gradio-container { | |
| max-width: 1200px; | |
| margin: auto; | |
| } | |
| .title { | |
| text-align: center; | |
| color: #2563eb; | |
| font-size: 2.5em; | |
| font-weight: bold; | |
| margin-bottom: 1em; | |
| } | |
| .subtitle { | |
| text-align: center; | |
| color: #64748b; | |
| font-size: 1.2em; | |
| margin-bottom: 2em; | |
| } | |
| """ | |
| with gr.Blocks(title="ZipVoice - Zero-Shot Text-to-Speech", css=css) as interface: | |
| gr.HTML(""" | |
| <div class="title">🎵 ZipVoice</div> | |
| <div class="subtitle">Fast and High-Quality Zero-Shot Text-to-Speech with Flow Matching</div> | |
| <div style="text-align: center; color: #64748b; font-size: 0.9em; margin-bottom: 1em;"> | |
| Upload audio, click "Transcribe Audio" to get automatic transcription, then generate speech in that voice! | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| text_input = gr.Textbox( | |
| label="Text to Synthesize", | |
| placeholder="Enter the text you want to convert to speech...", | |
| lines=3, | |
| value="這是一則語音測試" | |
| ) | |
| with gr.Row(): | |
| model_dropdown = gr.Dropdown( | |
| choices=["zipvoice", "zipvoice_distill"], | |
| value="zipvoice", | |
| label="Model" | |
| ) | |
| speed_slider = gr.Slider( | |
| minimum=0.5, | |
| maximum=2.0, | |
| value=1.0, | |
| step=0.1, | |
| label="Speed" | |
| ) | |
| prompt_audio = gr.File( | |
| label="Prompt Audio", | |
| file_types=["audio"], | |
| type="binary" | |
| ) | |
| prompt_text = gr.Textbox( | |
| label="Prompt Transcription", | |
| placeholder="Enter the exact transcription of the prompt audio...", | |
| lines=2 | |
| ) | |
| transcribe_btn = gr.Button( | |
| "🎤 Transcribe Audio", | |
| variant="secondary", | |
| size="sm" | |
| ) | |
| generate_btn = gr.Button( | |
| "🎵 Generate Speech", | |
| variant="primary", | |
| size="lg" | |
| ) | |
| with gr.Column(scale=1): | |
| output_audio = gr.Audio( | |
| label="Generated Speech", | |
| type="filepath" | |
| ) | |
| status_text = gr.Textbox( | |
| label="Status", | |
| interactive=False, | |
| lines=3 | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["I have a dream that one day this nation will rise up and live out the true meaning of its creed.", "jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice", 1.0], | |
| ["今天天氣真好,我們去公園散步吧!", "jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice", 1.0], | |
| ["The quick brown fox jumps over the lazy dog.", "jfk.wav", "ask not what your country can do for you, ask what you can do for your country", "zipvoice_distill", 1.2], | |
| ], | |
| inputs=[text_input, prompt_audio, prompt_text, model_dropdown, speed_slider], | |
| label="Quick Examples" | |
| ) | |
| # Event handling | |
| transcribe_btn.click( | |
| fn=transcribe_audio_whisper, | |
| inputs=[prompt_audio], | |
| outputs=[prompt_text] | |
| ) | |
| generate_btn.click( | |
| fn=synthesize_speech_gradio, | |
| inputs=[text_input, prompt_audio, prompt_text, model_dropdown, speed_slider], | |
| outputs=[output_audio, status_text] | |
| ) | |
| # Footer | |
| gr.HTML(""" | |
| <div style="text-align: center; margin-top: 2em; color: #64748b; font-size: 0.9em;"> | |
| <p>Powered by <a href="https://github.com/k2-fsa/ZipVoice" target="_blank">ZipVoice</a> | | |
| Built with <a href="https://gradio.app" target="_blank">Gradio</a></p> | |
| <p>Upload a short audio clip as prompt, and ZipVoice will synthesize speech in that voice style!</p> | |
| </div> | |
| """) | |
| return interface | |
| if __name__ == "__main__": | |
| # Create and launch the interface | |
| interface = create_gradio_interface() | |
| interface.launch( | |
| server_name="0.0.0.0", | |
| server_port=int(os.environ.get("PORT", 7860)), | |
| show_error=True | |
| ) |