Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import accelerate | |
| # Load the model and tokenizer | |
| model_name = "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0" | |
| accelerator = accelerate.Accelerator() | |
| model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=False, device_map="auto", offload_folder="/tmp") | |
| model = accelerator.prepare(model) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| def generate_prompt(instruction, user_input): | |
| """ | |
| Generates a prompt for the model to ensure it responds with the intent in the same language as the input. | |
| """ | |
| return f""" | |
| ### Instruction: | |
| {instruction} | |
| ### Input: | |
| {user_input} | |
| ### Response: | |
| """ | |
| def get_model_response(user_input, instruction="Identify and summarize the core intent in the same language:"): | |
| """ | |
| Gets the model's response, ensuring it matches the input language and focuses on extracting a concise intent. | |
| """ | |
| input_text = generate_prompt(instruction, user_input) | |
| inputs = tokenizer([input_text], return_tensors="pt") | |
| with accelerator.distribute_inputs_to_prepared(model.device_map, inputs): | |
| outputs = model.generate(**inputs, max_new_tokens=300, use_cache=True) | |
| response = tokenizer.batch_decode(accelerator.gather(outputs))[0] | |
| return response.split("### Response:")[-1].strip() | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_text = gr.Textbox(label="Input Text") | |
| instruction = gr.Textbox(label="Instruction", value="Identify and summarize the core intent in the same language:") | |
| output_text = gr.Textbox(label="Response") | |
| input_btn = gr.Button("Submit") | |
| input_btn.click(get_model_response, inputs=[input_text, instruction], outputs=output_text) | |
| demo.launch() |