Spaces:
Running
Running
Lucasstranger1
commited on
Commit
•
4a17310
1
Parent(s):
d9c2f6c
update
Browse files
app.py
CHANGED
@@ -1,20 +1,22 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import requests
|
4 |
-
from gtts import gTTS
|
5 |
from transformers import pipeline
|
6 |
from PIL import Image
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
#
|
|
|
13 |
|
14 |
-
#
|
15 |
def query(filename):
|
16 |
with open(filename, "rb") as f:
|
17 |
data = f.read()
|
|
|
|
|
18 |
response = requests.post(API_URL, headers=headers, data=data)
|
19 |
|
20 |
if response.status_code == 200:
|
@@ -25,16 +27,15 @@ def query(filename):
|
|
25 |
|
26 |
# Function to generate a joke or uplifting text based on the mood
|
27 |
def generate_text_based_on_mood(emotion):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
return "output.mp3" # Return the filename for playing
|
38 |
|
39 |
# Streamlit UI
|
40 |
st.title("Facial Expression Mood Detector")
|
@@ -55,16 +56,10 @@ if uploaded_file is not None:
|
|
55 |
# Detect facial expression
|
56 |
expression_output = query("uploaded_image.jpg")
|
57 |
if expression_output:
|
58 |
-
emotion = expression_output[0]['label'] # Adjust
|
59 |
st.write(f"Detected emotion: {emotion}")
|
60 |
|
61 |
# Generate text based on detected emotion
|
62 |
joke = generate_text_based_on_mood(emotion)
|
63 |
st.write("Here's something to cheer you up:")
|
64 |
st.write(joke)
|
65 |
-
|
66 |
-
# Convert the generated joke to audio
|
67 |
-
audio_file = text_to_speech(joke)
|
68 |
-
|
69 |
-
# Provide an audio player in the Streamlit app
|
70 |
-
st.audio(audio_file) # Streamlit will handle playback
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import requests
|
|
|
4 |
from transformers import pipeline
|
5 |
from PIL import Image
|
6 |
from dotenv import load_dotenv
|
7 |
|
8 |
+
# Load environment variables from .env file
|
9 |
+
load_dotenv()
|
10 |
|
11 |
+
# Set up the Hugging Face API URL and your API key
|
12 |
+
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
|
13 |
|
14 |
+
# Function to query the Hugging Face model for facial expression
|
15 |
def query(filename):
|
16 |
with open(filename, "rb") as f:
|
17 |
data = f.read()
|
18 |
+
# Use the facial expression model
|
19 |
+
API_URL = "https://api-inference.huggingface.co/models/microsoft/face-expression-recognition"
|
20 |
response = requests.post(API_URL, headers=headers, data=data)
|
21 |
|
22 |
if response.status_code == 200:
|
|
|
27 |
|
28 |
# Function to generate a joke or uplifting text based on the mood
|
29 |
def generate_text_based_on_mood(emotion):
|
30 |
+
try:
|
31 |
+
# Use GPT-Neo model
|
32 |
+
generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M')
|
33 |
+
prompt = f"Tell a joke that would cheer someone who is feeling {emotion}."
|
34 |
+
response = generator(prompt, max_length=50, num_return_sequences=1)
|
35 |
+
return response[0]['generated_text']
|
36 |
+
except Exception as e:
|
37 |
+
st.error(f"Error generating text: {e}")
|
38 |
+
return "Sorry, I couldn't come up with a joke at this moment."
|
|
|
39 |
|
40 |
# Streamlit UI
|
41 |
st.title("Facial Expression Mood Detector")
|
|
|
56 |
# Detect facial expression
|
57 |
expression_output = query("uploaded_image.jpg")
|
58 |
if expression_output:
|
59 |
+
emotion = expression_output[0]['label'] # Adjust based on response structure
|
60 |
st.write(f"Detected emotion: {emotion}")
|
61 |
|
62 |
# Generate text based on detected emotion
|
63 |
joke = generate_text_based_on_mood(emotion)
|
64 |
st.write("Here's something to cheer you up:")
|
65 |
st.write(joke)
|
|
|
|
|
|
|
|
|
|
|
|