Spaces:
Running
Running
Upload 18 files
Browse files- .gitattributes +35 -35
- Dockerfile +20 -0
- README.md +11 -10
- cnn.txt +67 -0
- explain.md +213 -0
- main.py +157 -0
- models/braintumor.h5 +3 -0
- requirements.txt +16 -0
- sampleimages/No tumor (2).jpeg +0 -0
- sampleimages/doubt.jpg +0 -0
- sampleimages/no tumor.jpeg +0 -0
- sampleimages/yes tumor (2).jpg +0 -0
- sampleimages/yes tumor.png +0 -0
- sampleimages/yes tumor1.jpg +0 -0
- static/brain.gif +0 -0
- templates/braintumor.html +230 -0
- templates/dbresults.html +151 -0
- templates/resultbt.html +147 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Using Python 3.9 base image
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
# Set the working directory to /code
|
5 |
+
WORKDIR /code
|
6 |
+
|
7 |
+
# Install necessary system dependencies, including libGL.so.1
|
8 |
+
RUN apt-get update && apt-get install -y libgl1 && apt-get clean
|
9 |
+
|
10 |
+
# Copy requirements.txt to /code
|
11 |
+
COPY ./requirements.txt /code/requirements.txt
|
12 |
+
|
13 |
+
# Install dependencies from requirements.txt
|
14 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
15 |
+
|
16 |
+
# Copy the entire project content to /code
|
17 |
+
COPY . /code
|
18 |
+
|
19 |
+
# CMD to run Gunicorn
|
20 |
+
CMD ["gunicorn", "main:app", "-b", "0.0.0.0:7860"]
|
README.md
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo: red
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
1 |
+
---
|
2 |
+
title: Flask
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: red
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
license: cc
|
9 |
+
---
|
10 |
+
|
11 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
cnn.txt
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
In this Flask application, the model you're loading (`braintumor_model`) is a Convolutional Neural Network (CNN) trained to detect brain tumors in images. The CNN model is used to classify the images after preprocessing and passing them through the network.
|
2 |
+
Here's a breakdown of how CNN is used and how it's integrated into your Flask app:
|
3 |
+
|
4 |
+
Key Concepts of CNN in Your Application
|
5 |
+
|
6 |
+
1. Convolutional Layers (Feature Extraction):
|
7 |
+
CNNs are designed to automatically learn spatial hierarchies of features from the input image (in this case, brain tumor images).
|
8 |
+
The convolutional layers apply convolutional filters (kernels) that detect low-level features like edges, corners, and textures. As the image passes through multiple layers of convolutions, it progressively detects more complex features like shapes or regions of interest.
|
9 |
+
|
10 |
+
2. Pooling Layers (Downsampling):
|
11 |
+
After convolutions, pooling layers (often Max Pooling) are applied to reduce the spatial dimensions of the feature maps.
|
12 |
+
This helps in reducing the computational complexity while preserving important features.
|
13 |
+
|
14 |
+
3. Fully Connected Layers (Classification):
|
15 |
+
After the feature extraction and downsampling, the CNN typically flattens the resulting feature maps into a 1D vector and feeds it into fully connected layers (Dense layers).
|
16 |
+
The final fully connected layer outputs the prediction, which can be a binary classification in your case (whether a tumor is present or not).
|
17 |
+
|
18 |
+
4. Activation Functions (Non-linearity):
|
19 |
+
The CNN typically uses activation functions like ReLU (Rectified Linear Unit) after each convolutional and fully connected layer to introduce non-linearity, allowing the model to learn complex patterns.
|
20 |
+
The final layer likely uses a sigmoid activation function (since it's a binary classification) to output a value between 0 and 1. A value close to 0 indicates no tumor, while a value close to 1 indicates a tumor.
|
21 |
+
|
22 |
+
How the CNN Works in Your Flask App
|
23 |
+
|
24 |
+
1. Model Loading:
|
25 |
+
You load a pre-trained CNN model using `braintumor_model = load_model('models/braintumor.h5')`.
|
26 |
+
This model is assumed to be trained on a dataset of brain images, where it learns to classify whether a brain tumor is present or not.
|
27 |
+
|
28 |
+
2. Image Preprocessing:
|
29 |
+
Before the image is fed into the model for prediction, it's preprocessed using two main functions:
|
30 |
+
`crop_imgs`: Crops the region of interest (ROI) where the tumor is likely located. This reduces the unnecessary image data, focusing the model on the area that matters most.
|
31 |
+
`preprocess_imgs`: Resizes the image to the target size (224x224), which is the input size expected by the CNN. The CNN likely uses VGG16 or a similar architecture, which typically accepts 224x224 pixel images.
|
32 |
+
|
33 |
+
3. Image Prediction:
|
34 |
+
- Once the image is preprocessed, it is passed into the CNN for prediction:
|
35 |
+
|
36 |
+
pred = braintumor_model.predict(img)
|
37 |
+
|
38 |
+
The model outputs a value between 0 and 1. This is the probability that the image contains a tumor.
|
39 |
+
If `pred < 0.5`, the model classifies the image as **no tumor** (`pred = 0`).
|
40 |
+
If `pred >= 0.5`, the model classifies the image as **tumor detected** (`pred = 1`).
|
41 |
+
|
42 |
+
4. Displaying Results:
|
43 |
+
Based on the prediction, the result is displayed on the `resultbt.html` page, where the user is informed if the image contains a tumor or not.
|
44 |
+
|
45 |
+
A High-Level Overview of CNN in Action:
|
46 |
+
Image Input: A brain MRI image is uploaded by the user.
|
47 |
+
Preprocessing: The image is cropped to focus on the relevant region (tumor area), resized to the required input size for the CNN, and normalized (if necessary).
|
48 |
+
CNN Prediction: The processed image is passed through the CNN, which performs feature extraction and classification. The output is a probability score (0 or 1) indicating the likelihood of a tumor being present.
|
49 |
+
Output: The app displays whether a tumor is present or not based on the CNN's prediction.
|
50 |
+
|
51 |
+
CNN Model Workflow (High-Level)
|
52 |
+
|
53 |
+
1. Convolution Layers: Learn to detect features like edges, textures, and structures in the image.
|
54 |
+
2. Pooling Layers: Reduce the dimensionality while retaining key features.
|
55 |
+
3. Fully Connected Layers: Use the learned features to make a classification decision (tumor vs. no tumor).
|
56 |
+
4. Prediction: The model outputs a binary classification result: `0` (no tumor) or `1` (tumor detected).
|
57 |
+
|
58 |
+
Training of the CNN Model (Assumed):
|
59 |
+
The model (`braintumor_model.h5`) you are loading in the app is assumed to be pre-trained on a large dataset of brain tumor images (e.g., MRI scans), where it has learned the distinguishing features of images with and without tumors. Typically, this training would involve:
|
60 |
+
Convolutional layers for feature extraction.
|
61 |
+
Pooling layers to reduce spatial dimensions.
|
62 |
+
Fully connected layers to classify the image as containing a tumor or not.
|
63 |
+
|
64 |
+
This pre-trained model can then be used for inference (prediction) on new images that are uploaded by the user.
|
65 |
+
|
66 |
+
Your application uses a Convolutional Neural Network (CNN) to detect brain tumors in images.
|
67 |
+
The CNN is trained to learn features from medical images, and when a user uploads an image, the app preprocesses it, passes it through the model, and provides a prediction (tumor detected or not). The model’s decision is based on its learned understanding of what a tumor looks like, making it an effective tool for automatic detection.
|
explain.md
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### **Code Explanation for Brain Tumor Detection Application Using Flask**
|
2 |
+
|
3 |
+
This Flask-based application allows users to upload an image (like an MRI scan) to predict if a brain tumor is detected using a pre-trained CNN (Convolutional Neural Network) model. The results, along with user details, are saved in a MongoDB database for review.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
### **1. Importing Required Libraries**
|
8 |
+
|
9 |
+
```python
|
10 |
+
from flask import Flask, flash, request, redirect, render_template
|
11 |
+
import os
|
12 |
+
import cv2
|
13 |
+
import imutils
|
14 |
+
import numpy as np
|
15 |
+
from tensorflow.keras.models import load_model
|
16 |
+
from werkzeug.utils import secure_filename
|
17 |
+
import tempfile
|
18 |
+
from pymongo import MongoClient
|
19 |
+
from datetime import datetime
|
20 |
+
```
|
21 |
+
|
22 |
+
- **Flask**: A lightweight web framework to create web applications.
|
23 |
+
- **OpenCV (cv2)**: Library for image processing.
|
24 |
+
- **imutils**: Helper functions for image manipulation.
|
25 |
+
- **NumPy**: Array and mathematical operations.
|
26 |
+
- **TensorFlow/Keras**: To load the pre-trained brain tumor detection model.
|
27 |
+
- **MongoDB**: To store user inputs and model predictions.
|
28 |
+
- **Werkzeug**: For securely handling file uploads.
|
29 |
+
- **Datetime**: To save the timestamp for each prediction.
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
### **2. Loading the Pre-trained Model**
|
34 |
+
|
35 |
+
```python
|
36 |
+
braintumor_model = load_model('models/braintumor.h5')
|
37 |
+
```
|
38 |
+
- The brain tumor model (`braintumor.h5`) is loaded. This is a CNN-based model trained to detect brain tumors from images.
|
39 |
+
|
40 |
+
---
|
41 |
+
|
42 |
+
### **3. Flask Application Configuration**
|
43 |
+
|
44 |
+
```python
|
45 |
+
app = Flask(__name__)
|
46 |
+
app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 # Disable caching
|
47 |
+
app.secret_key = "nielitchandigarhpunjabpolice"
|
48 |
+
```
|
49 |
+
|
50 |
+
- Flask is initialized, and caching for images is disabled to ensure updated images load after upload.
|
51 |
+
- A **secret key** is set for session management, which helps in managing messages (like flash messages).
|
52 |
+
|
53 |
+
---
|
54 |
+
|
55 |
+
### **4. MongoDB Connection**
|
56 |
+
|
57 |
+
```python
|
58 |
+
client = MongoClient("mongodb+srv://test:test@cluster0.sxci1.mongodb.net/?retryWrites=true&w=majority")
|
59 |
+
db = client['brain_tumor_detection'] # Database name
|
60 |
+
collection = db['predictions'] # Collection name
|
61 |
+
```
|
62 |
+
- Connects to **MongoDB Atlas** (cloud-hosted database).
|
63 |
+
- A database named `brain_tumor_detection` and collection `predictions` are created to store user details and predictions.
|
64 |
+
|
65 |
+
---
|
66 |
+
|
67 |
+
### **5. File Upload Helper Function**
|
68 |
+
|
69 |
+
```python
|
70 |
+
ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg'])
|
71 |
+
|
72 |
+
def allowed_file(filename):
|
73 |
+
return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
|
74 |
+
```
|
75 |
+
- Only files with extensions **png, jpg, jpeg** are allowed to ensure proper image input.
|
76 |
+
|
77 |
+
---
|
78 |
+
|
79 |
+
### **6. Image Preprocessing**
|
80 |
+
|
81 |
+
**a. `preprocess_imgs`: Resizing Images**
|
82 |
+
|
83 |
+
```python
|
84 |
+
def preprocess_imgs(set_name, img_size):
|
85 |
+
set_new = []
|
86 |
+
for img in set_name:
|
87 |
+
img = cv2.resize(img, dsize=img_size, interpolation=cv2.INTER_CUBIC)
|
88 |
+
set_new.append(img)
|
89 |
+
return np.array(set_new)
|
90 |
+
```
|
91 |
+
- Resizes the input image to a specific size (224x224) required by the model.
|
92 |
+
|
93 |
+
**b. `crop_imgs`: Region of Interest (ROI) Extraction**
|
94 |
+
|
95 |
+
```python
|
96 |
+
def crop_imgs(set_name, add_pixels_value=0):
|
97 |
+
set_new = []
|
98 |
+
for img in set_name:
|
99 |
+
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
100 |
+
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
101 |
+
thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1]
|
102 |
+
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
103 |
+
c = max(cnts, key=cv2.contourArea)
|
104 |
+
extLeft = tuple(c[c[:, :, 0].argmin()][0])
|
105 |
+
extRight = tuple(c[c[:, :, 0].argmax()][0])
|
106 |
+
extTop = tuple(c[c[:, :, 1].argmin()][0])
|
107 |
+
extBot = tuple(c[c[:, :, 1].argmax()][0])
|
108 |
+
new_img = img[extTop[1]:extBot[1], extLeft[0]:extRight[0]].copy()
|
109 |
+
set_new.append(new_img)
|
110 |
+
return np.array(set_new)
|
111 |
+
```
|
112 |
+
- This function identifies the **region of interest (ROI)**, cropping only the area where the brain is located for better accuracy.
|
113 |
+
|
114 |
+
---
|
115 |
+
|
116 |
+
### **7. Routes in Flask**
|
117 |
+
|
118 |
+
**a. `/` Route - Main Page**
|
119 |
+
|
120 |
+
```python
|
121 |
+
@app.route('/')
|
122 |
+
def brain_tumor():
|
123 |
+
return render_template('braintumor.html')
|
124 |
+
```
|
125 |
+
- Displays the main upload form (`braintumor.html`).
|
126 |
+
|
127 |
+
**b. `/resultbt` Route - Prediction**
|
128 |
+
|
129 |
+
```python
|
130 |
+
@app.route('/resultbt', methods=['POST'])
|
131 |
+
def resultbt():
|
132 |
+
# 1. Extract user inputs
|
133 |
+
firstname = request.form['firstname']
|
134 |
+
file = request.files['file']
|
135 |
+
|
136 |
+
# 2. Validate image
|
137 |
+
if file and allowed_file(file.filename):
|
138 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
139 |
+
file.save(temp_file.name)
|
140 |
+
|
141 |
+
# 3. Process Image
|
142 |
+
img = cv2.imread(temp_file.name)
|
143 |
+
img = crop_imgs([img])
|
144 |
+
img = preprocess_imgs([img], (224, 224))
|
145 |
+
|
146 |
+
# 4. Predict
|
147 |
+
pred = braintumor_model.predict(img)
|
148 |
+
prediction = 'Tumor Detected' if pred[0][0] >= 0.5 else 'No Tumor Detected'
|
149 |
+
confidence_score = float(pred[0][0])
|
150 |
+
|
151 |
+
# 5. Save to MongoDB
|
152 |
+
result = {
|
153 |
+
"firstname": firstname,
|
154 |
+
"prediction": prediction,
|
155 |
+
"confidence_score": confidence_score,
|
156 |
+
"timestamp": datetime.utcnow()
|
157 |
+
}
|
158 |
+
collection.insert_one(result)
|
159 |
+
|
160 |
+
# 6. Return Results
|
161 |
+
return render_template('resultbt.html', r=prediction)
|
162 |
+
else:
|
163 |
+
flash('Invalid file format!')
|
164 |
+
return redirect(request.url)
|
165 |
+
```
|
166 |
+
- **Step-by-step Flow**:
|
167 |
+
1. Accept user inputs and uploaded image.
|
168 |
+
2. Validate the file format.
|
169 |
+
3. Preprocess the image (crop and resize).
|
170 |
+
4. Use the CNN model to predict if there is a tumor.🚀
|
171 |
+
5. Save the prediction and user details to MongoDB.
|
172 |
+
6. Return the result.
|
173 |
+
|
174 |
+
**c. `/dbresults` Route - Fetch Predictions**
|
175 |
+
|
176 |
+
```python
|
177 |
+
@app.route('/dbresults')
|
178 |
+
def dbresults():
|
179 |
+
all_results = collection.find().sort("timestamp", -1)
|
180 |
+
tumor_count = sum(1 for r in all_results if r['prediction'] == 'Tumor Detected')
|
181 |
+
total_patients = collection.count_documents({})
|
182 |
+
return render_template('dbresults.html', total_patients=total_patients, tumor_count=tumor_count)
|
183 |
+
```
|
184 |
+
- Fetches all predictions from MongoDB and aggregates results (total patients, tumors detected).
|
185 |
+
|
186 |
+
---
|
187 |
+
|
188 |
+
### **8. Running the App**
|
189 |
+
|
190 |
+
```python
|
191 |
+
if __name__ == '__main__':
|
192 |
+
app.run(debug=True)
|
193 |
+
```
|
194 |
+
- Runs the Flask application in **debug mode**.
|
195 |
+
|
196 |
+
---
|
197 |
+
|
198 |
+
### **Summary of Flow**
|
199 |
+
1. User uploads an MRI image and provides basic details.
|
200 |
+
2. Image is preprocessed (cropped, resized) for the CNN model.
|
201 |
+
3. The model predicts if a **brain tumor is detected** or not.
|
202 |
+
4. Results are stored in MongoDB and displayed back to the user.
|
203 |
+
5. Admins can view all results via the `/dbresults` route.
|
204 |
+
|
205 |
+
---
|
206 |
+
|
207 |
+
### **Tips**
|
208 |
+
1. **Flask Routes** handle user requests (`/`, `/resultbt`, `/dbresults`).
|
209 |
+
2. **OpenCV** helps preprocess images.
|
210 |
+
3. **MongoDB** stores user details and model predictions.
|
211 |
+
4. **Model Prediction** is done via a pre-trained Keras model.
|
212 |
+
5. Templates (`braintumor.html`, `resultbt.html`) are used to display data.
|
213 |
+
|
main.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, flash, request, redirect, render_template
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import imutils
|
5 |
+
import numpy as np
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
from werkzeug.utils import secure_filename
|
8 |
+
import tempfile
|
9 |
+
from pymongo import MongoClient
|
10 |
+
from datetime import datetime
|
11 |
+
|
12 |
+
# Load the Brain Tumor CNN Model
|
13 |
+
braintumor_model = load_model('models/braintumor.h5')
|
14 |
+
|
15 |
+
# Configuring Flask application
|
16 |
+
app = Flask(__name__)
|
17 |
+
app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 # Disable caching for images
|
18 |
+
app.secret_key = "nielitchandigarhpunjabpolice" # Secret key for session management
|
19 |
+
|
20 |
+
# Allowed image file extensions
|
21 |
+
ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg'])
|
22 |
+
|
23 |
+
# Connect to MongoDB Atlas
|
24 |
+
client = MongoClient("mongodb+srv://test:test@cluster0.sxci1.mongodb.net/?retryWrites=true&w=majority")
|
25 |
+
db = client['brain_tumor_detection'] # Database name
|
26 |
+
collection = db['predictions'] # Collection name
|
27 |
+
|
28 |
+
def allowed_file(filename):
|
29 |
+
"""Check if the file is a valid image format (png, jpg, jpeg)."""
|
30 |
+
return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
|
31 |
+
|
32 |
+
def preprocess_imgs(set_name, img_size):
|
33 |
+
"""
|
34 |
+
Preprocess images by resizing them to the target size (224x224 for VGG16)
|
35 |
+
and applying appropriate resizing techniques.
|
36 |
+
"""
|
37 |
+
set_new = []
|
38 |
+
for img in set_name:
|
39 |
+
img = cv2.resize(img, dsize=img_size, interpolation=cv2.INTER_CUBIC) # Resize image
|
40 |
+
set_new.append(img)
|
41 |
+
return np.array(set_new)
|
42 |
+
|
43 |
+
def crop_imgs(set_name, add_pixels_value=0):
|
44 |
+
"""
|
45 |
+
Crop the region of interest (ROI) in the image for brain tumor detection.
|
46 |
+
"""
|
47 |
+
set_new = []
|
48 |
+
for img in set_name:
|
49 |
+
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
50 |
+
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
51 |
+
thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1]
|
52 |
+
thresh = cv2.erode(thresh, None, iterations=2)
|
53 |
+
thresh = cv2.dilate(thresh, None, iterations=2)
|
54 |
+
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
55 |
+
cnts = imutils.grab_contours(cnts)
|
56 |
+
c = max(cnts, key=cv2.contourArea)
|
57 |
+
extLeft = tuple(c[c[:, :, 0].argmin()][0])
|
58 |
+
extRight = tuple(c[c[:, :, 0].argmax()][0])
|
59 |
+
extTop = tuple(c[c[:, :, 1].argmin()][0])
|
60 |
+
extBot = tuple(c[c[:, :, 1].argmax()][0])
|
61 |
+
ADD_PIXELS = add_pixels_value
|
62 |
+
new_img = img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS,
|
63 |
+
extLeft[0]-ADD_PIXELS:extRight[0]+ADD_PIXELS].copy()
|
64 |
+
set_new.append(new_img)
|
65 |
+
return np.array(set_new)
|
66 |
+
|
67 |
+
@app.route('/')
|
68 |
+
def brain_tumor():
|
69 |
+
"""Render the HTML form for the user to upload an image."""
|
70 |
+
return render_template('braintumor.html')
|
71 |
+
|
72 |
+
@app.route('/resultbt', methods=['POST'])
|
73 |
+
def resultbt():
|
74 |
+
"""Process the uploaded image and save prediction results to MongoDB."""
|
75 |
+
if request.method == 'POST':
|
76 |
+
firstname = request.form['firstname']
|
77 |
+
lastname = request.form['lastname']
|
78 |
+
email = request.form['email']
|
79 |
+
phone = request.form['phone']
|
80 |
+
gender = request.form['gender']
|
81 |
+
age = request.form['age']
|
82 |
+
file = request.files['file']
|
83 |
+
|
84 |
+
if file and allowed_file(file.filename):
|
85 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
86 |
+
filename = secure_filename(file.filename)
|
87 |
+
file.save(temp_file.name)
|
88 |
+
|
89 |
+
flash('Image successfully uploaded and displayed below')
|
90 |
+
|
91 |
+
# Process the image
|
92 |
+
img = cv2.imread(temp_file.name)
|
93 |
+
img = crop_imgs([img])
|
94 |
+
img = img.reshape(img.shape[1:])
|
95 |
+
img = preprocess_imgs([img], (224, 224))
|
96 |
+
|
97 |
+
# Make prediction
|
98 |
+
pred = braintumor_model.predict(img)
|
99 |
+
prediction = 'Tumor Detected' if pred[0][0] >= 0.5 else 'No Tumor Detected'
|
100 |
+
confidence_score = float(pred[0][0])
|
101 |
+
|
102 |
+
# Prepare data for MongoDB
|
103 |
+
result = {
|
104 |
+
"firstname": firstname,
|
105 |
+
"lastname": lastname,
|
106 |
+
"email": email,
|
107 |
+
"phone": phone,
|
108 |
+
"gender": gender,
|
109 |
+
"age": age,
|
110 |
+
"image_name": filename,
|
111 |
+
"prediction": prediction,
|
112 |
+
"confidence_score": confidence_score,
|
113 |
+
"timestamp": datetime.utcnow()
|
114 |
+
}
|
115 |
+
|
116 |
+
# Insert data into MongoDB
|
117 |
+
collection.insert_one(result)
|
118 |
+
|
119 |
+
# Return the result to the user
|
120 |
+
return render_template('resultbt.html', filename=filename, fn=firstname, ln=lastname, age=age, r=prediction, gender=gender)
|
121 |
+
else:
|
122 |
+
flash('Allowed image types are - png, jpg, jpeg')
|
123 |
+
return redirect(request.url)
|
124 |
+
|
125 |
+
@app.route('/dbresults')
|
126 |
+
def dbresults():
|
127 |
+
"""Fetch all results from MongoDB, show aggregated data, and render in a template."""
|
128 |
+
# Fetch all documents from MongoDB, sorted by timestamp in descending order
|
129 |
+
all_results = collection.find().sort("timestamp", -1) # Sort by timestamp, latest first
|
130 |
+
|
131 |
+
# Convert cursor to a list of dictionaries
|
132 |
+
results_list = []
|
133 |
+
tumor_count = 0
|
134 |
+
no_tumor_count = 0
|
135 |
+
|
136 |
+
for result in all_results:
|
137 |
+
result['_id'] = str(result['_id']) # Convert ObjectId to string for JSON serialization
|
138 |
+
results_list.append(result)
|
139 |
+
|
140 |
+
# Count total patients with tumor and without tumor
|
141 |
+
if result['prediction'] == 'Tumor Detected':
|
142 |
+
tumor_count += 1
|
143 |
+
else:
|
144 |
+
no_tumor_count += 1
|
145 |
+
|
146 |
+
total_patients = len(results_list) # Total number of patients
|
147 |
+
|
148 |
+
# Pass the results and aggregated counts to the HTML template
|
149 |
+
return render_template('dbresults.html',
|
150 |
+
results=results_list,
|
151 |
+
total_patients=total_patients,
|
152 |
+
tumor_count=tumor_count,
|
153 |
+
no_tumor_count=no_tumor_count)
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == '__main__':
|
157 |
+
app.run(debug=True)
|
models/braintumor.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a756efdea8aa2748819ea2ccfbf2e0f4dad62236726532adb50439f06f55165
|
3 |
+
size 59111488
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
flask-cors
|
3 |
+
gunicorn
|
4 |
+
Jinja2
|
5 |
+
pandas
|
6 |
+
numpy
|
7 |
+
scikit-learn
|
8 |
+
tensorflow
|
9 |
+
imutils
|
10 |
+
opencv-python
|
11 |
+
matplotlib
|
12 |
+
Werkzeug
|
13 |
+
Pillow
|
14 |
+
pymongo
|
15 |
+
datetime
|
16 |
+
|
sampleimages/No tumor (2).jpeg
ADDED
![]() |
sampleimages/doubt.jpg
ADDED
![]() |
sampleimages/no tumor.jpeg
ADDED
![]() |
sampleimages/yes tumor (2).jpg
ADDED
![]() |
sampleimages/yes tumor.png
ADDED
![]() |
sampleimages/yes tumor1.jpg
ADDED
![]() |
static/brain.gif
ADDED
![]() |
templates/braintumor.html
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype html>
|
2 |
+
<html lang="en">
|
3 |
+
|
4 |
+
<head>
|
5 |
+
<!-- Required meta tags -->
|
6 |
+
<meta charset="utf-8">
|
7 |
+
<meta name="viewport" content="width=device-width, initial-scale=1">
|
8 |
+
|
9 |
+
<!-- Bootstrap CSS -->
|
10 |
+
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0-beta3/dist/css/bootstrap.min.css" rel="stylesheet"
|
11 |
+
integrity="sha384-eOJMYsd53ii+scO/bJGFsiCZc+5NDVN2yr8+0RDqr0Ql0h+rP48ckxlpbzKgwra6" crossorigin="anonymous">
|
12 |
+
|
13 |
+
<!-- Custom Styles -->
|
14 |
+
<style type="text/css">
|
15 |
+
body {
|
16 |
+
background-image: url(static/brain.gif);
|
17 |
+
background-position: center;
|
18 |
+
background-size: cover;
|
19 |
+
font-family: 'Roboto', sans-serif;
|
20 |
+
margin-top: 40px;
|
21 |
+
color: #fff;
|
22 |
+
}
|
23 |
+
|
24 |
+
.navbar {
|
25 |
+
background-color: #212121 !important;
|
26 |
+
}
|
27 |
+
|
28 |
+
.navbar-brand {
|
29 |
+
font-weight: bold;
|
30 |
+
font-size: 1.5rem;
|
31 |
+
}
|
32 |
+
|
33 |
+
.regform {
|
34 |
+
background-color: rgba(0, 0, 0, 0.6);
|
35 |
+
padding: 20px;
|
36 |
+
text-align: center;
|
37 |
+
border-radius: 15px 15px 0 0;
|
38 |
+
box-shadow: 0 10px 15px rgba(0, 0, 0, 0.5);
|
39 |
+
margin-top: 20px;
|
40 |
+
}
|
41 |
+
|
42 |
+
.regform h1 {
|
43 |
+
font-size: 2rem;
|
44 |
+
font-weight: bold;
|
45 |
+
}
|
46 |
+
|
47 |
+
.main-form {
|
48 |
+
background-color: rgba(0, 0, 0, 0.7);
|
49 |
+
margin: 20px auto;
|
50 |
+
padding: 30px;
|
51 |
+
border-radius: 10px;
|
52 |
+
max-width: 900px;
|
53 |
+
}
|
54 |
+
|
55 |
+
.form-group label {
|
56 |
+
font-size: 1rem;
|
57 |
+
font-weight: 500;
|
58 |
+
}
|
59 |
+
|
60 |
+
.form-control {
|
61 |
+
border-radius: 5px;
|
62 |
+
box-shadow: none;
|
63 |
+
border: 2px solid #bbb;
|
64 |
+
margin-bottom: 15px;
|
65 |
+
}
|
66 |
+
|
67 |
+
.form-control:focus {
|
68 |
+
border-color: #5cb85c;
|
69 |
+
}
|
70 |
+
|
71 |
+
.btn-submit {
|
72 |
+
background-color: #28a745;
|
73 |
+
color: white;
|
74 |
+
font-size: 1.1rem;
|
75 |
+
padding: 15px 30px;
|
76 |
+
border-radius: 5px;
|
77 |
+
border: none;
|
78 |
+
transition: background-color 0.3s ease;
|
79 |
+
}
|
80 |
+
|
81 |
+
.btn-submit:hover {
|
82 |
+
background-color: #218838;
|
83 |
+
}
|
84 |
+
|
85 |
+
.form-text {
|
86 |
+
font-size: 0.85rem;
|
87 |
+
}
|
88 |
+
|
89 |
+
.col-md-6 {
|
90 |
+
margin-bottom: 15px;
|
91 |
+
}
|
92 |
+
|
93 |
+
.col-md-6 label,
|
94 |
+
.col-md-6 input,
|
95 |
+
.col-md-6 select {
|
96 |
+
font-size: 1rem;
|
97 |
+
}
|
98 |
+
|
99 |
+
.footer {
|
100 |
+
text-align: center;
|
101 |
+
margin-top: 30px;
|
102 |
+
font-size: 0.9rem;
|
103 |
+
color: #ccc;
|
104 |
+
}
|
105 |
+
|
106 |
+
/* Responsive design */
|
107 |
+
@media (max-width: 767px) {
|
108 |
+
.regform h1 {
|
109 |
+
font-size: 1.6rem;
|
110 |
+
}
|
111 |
+
|
112 |
+
.main-form {
|
113 |
+
padding: 20px;
|
114 |
+
}
|
115 |
+
}
|
116 |
+
</style>
|
117 |
+
|
118 |
+
<title>Brain Tumor Detection</title>
|
119 |
+
</head>
|
120 |
+
|
121 |
+
<body>
|
122 |
+
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
|
123 |
+
<div class="container-fluid">
|
124 |
+
<a class="navbar-brand" href="/">CNN Brain Tumor Detection</a>
|
125 |
+
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbarNav"
|
126 |
+
aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
|
127 |
+
<span class="navbar-toggler-icon"></span>
|
128 |
+
</button>
|
129 |
+
<div class="collapse navbar-collapse" id="navbarNav">
|
130 |
+
<ul class="navbar-nav ms-auto">
|
131 |
+
<li class="nav-item">
|
132 |
+
<a class="nav-link" href="/dbresults">View MongoDB Results</a>
|
133 |
+
</li>
|
134 |
+
</ul>
|
135 |
+
</div>
|
136 |
+
</div>
|
137 |
+
</nav>
|
138 |
+
|
139 |
+
<div class="regform">
|
140 |
+
<h1>Brain Tumor Detection Form</h1>
|
141 |
+
</div>
|
142 |
+
|
143 |
+
<div class="container">
|
144 |
+
<form action="resultbt" class="main-form needs-validation" method="POST" enctype="multipart/form-data" novalidate>
|
145 |
+
<div class="row">
|
146 |
+
<div class="col-md-6">
|
147 |
+
<div class="form-group">
|
148 |
+
<label for="firstname">First Name</label>
|
149 |
+
<input type="text" name="firstname" id="firstname" class="form-control" required>
|
150 |
+
</div>
|
151 |
+
</div>
|
152 |
+
<div class="col-md-6">
|
153 |
+
<div class="form-group">
|
154 |
+
<label for="lastname">Last Name</label>
|
155 |
+
<input type="text" name="lastname" id="lastname" class="form-control" required>
|
156 |
+
</div>
|
157 |
+
</div>
|
158 |
+
</div>
|
159 |
+
|
160 |
+
<div class="form-group">
|
161 |
+
<label for="phone">Phone Number</label>
|
162 |
+
<input type="tel" name="phone" id="phone" class="form-control" required>
|
163 |
+
<small class="form-text">* Include your area code</small>
|
164 |
+
</div>
|
165 |
+
|
166 |
+
<div class="form-group">
|
167 |
+
<label for="email">Email Address</label>
|
168 |
+
<input type="email" name="email" id="email" class="form-control" required>
|
169 |
+
</div>
|
170 |
+
|
171 |
+
<div class="row">
|
172 |
+
<div class="col-md-6">
|
173 |
+
<div class="form-group">
|
174 |
+
<label for="gender">Gender</label>
|
175 |
+
<select name="gender" id="gender" class="form-control" required>
|
176 |
+
<option value="male">Male</option>
|
177 |
+
<option value="female">Female</option>
|
178 |
+
</select>
|
179 |
+
</div>
|
180 |
+
</div>
|
181 |
+
<div class="col-md-6">
|
182 |
+
<div class="form-group">
|
183 |
+
<label for="age">Age</label>
|
184 |
+
<input type="number" name="age" id="age" class="form-control" required>
|
185 |
+
</div>
|
186 |
+
</div>
|
187 |
+
</div>
|
188 |
+
|
189 |
+
<div class="form-group">
|
190 |
+
<label for="file">Upload Your Brain MRI</label>
|
191 |
+
<input type="file" class="form-control" id="file" name="file" required>
|
192 |
+
</div>
|
193 |
+
|
194 |
+
<div class="text-center">
|
195 |
+
<button type="submit" class="btn-submit">Submit</button>
|
196 |
+
</div>
|
197 |
+
</form>
|
198 |
+
</div>
|
199 |
+
|
200 |
+
<div class="footer">
|
201 |
+
<p>© 2024 Brain Tumor Detection - All Rights Reserved</p>
|
202 |
+
</div>
|
203 |
+
|
204 |
+
<!-- Bootstrap Bundle with Popper -->
|
205 |
+
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0-beta3/dist/js/bootstrap.bundle.min.js"
|
206 |
+
integrity="sha384-JEW9xMcG8R+pH31jmWH6WWP0WintQrMb4s7ZOdauHnUtxwoG2vI5DkLtS3qm9Ekf"
|
207 |
+
crossorigin="anonymous"></script>
|
208 |
+
|
209 |
+
<!-- Enable Bootstrap validation -->
|
210 |
+
<script>
|
211 |
+
(function () {
|
212 |
+
'use strict'
|
213 |
+
// Fetch all the forms we want to apply custom Bootstrap validation styles to
|
214 |
+
var forms = document.querySelectorAll('.needs-validation')
|
215 |
+
// Loop over them and prevent submission
|
216 |
+
Array.prototype.slice.call(forms)
|
217 |
+
.forEach(function (form) {
|
218 |
+
form.addEventListener('submit', function (event) {
|
219 |
+
if (!form.checkValidity()) {
|
220 |
+
event.preventDefault()
|
221 |
+
event.stopPropagation()
|
222 |
+
}
|
223 |
+
form.classList.add('was-validated')
|
224 |
+
}, false)
|
225 |
+
})
|
226 |
+
})()
|
227 |
+
</script>
|
228 |
+
</body>
|
229 |
+
|
230 |
+
</html>
|
templates/dbresults.html
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Database Results</title>
|
7 |
+
|
8 |
+
<!-- Custom Styles -->
|
9 |
+
<style>
|
10 |
+
body {
|
11 |
+
font-family: 'Roboto', sans-serif;
|
12 |
+
background-image: url('static/brain.gif');
|
13 |
+
background-position: center;
|
14 |
+
background-size: cover;
|
15 |
+
color: #fff;
|
16 |
+
padding-top: 20px;
|
17 |
+
}
|
18 |
+
|
19 |
+
h1 {
|
20 |
+
text-align: center;
|
21 |
+
font-size: 2rem;
|
22 |
+
font-weight: bold;
|
23 |
+
color: #fff;
|
24 |
+
}
|
25 |
+
|
26 |
+
.stats-container {
|
27 |
+
width: 90%;
|
28 |
+
margin: 20px auto;
|
29 |
+
text-align: center;
|
30 |
+
background-color: rgba(0, 0, 0, 0.7);
|
31 |
+
padding: 20px;
|
32 |
+
border-radius: 10px;
|
33 |
+
box-shadow: 0 5px 10px rgba(0, 0, 0, 0.5);
|
34 |
+
}
|
35 |
+
|
36 |
+
.stats-container h2 {
|
37 |
+
font-size: 1.5rem;
|
38 |
+
margin: 10px 0;
|
39 |
+
color: #fff;
|
40 |
+
}
|
41 |
+
|
42 |
+
table {
|
43 |
+
width: 90%;
|
44 |
+
margin: 30px auto;
|
45 |
+
border-collapse: collapse;
|
46 |
+
background-color: rgba(0, 0, 0, 0.6);
|
47 |
+
border-radius: 10px;
|
48 |
+
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.6);
|
49 |
+
}
|
50 |
+
|
51 |
+
th, td {
|
52 |
+
border: 1px solid #ddd;
|
53 |
+
padding: 12px 18px;
|
54 |
+
text-align: center;
|
55 |
+
font-size: 1.1rem;
|
56 |
+
}
|
57 |
+
|
58 |
+
th {
|
59 |
+
background-color: #343a40;
|
60 |
+
color: #fff;
|
61 |
+
}
|
62 |
+
|
63 |
+
td {
|
64 |
+
background-color: rgba(255, 255, 255, 0.1);
|
65 |
+
color: #fff;
|
66 |
+
}
|
67 |
+
|
68 |
+
tr:nth-child(even) {
|
69 |
+
background-color: rgba(255, 255, 255, 0.15);
|
70 |
+
}
|
71 |
+
|
72 |
+
tr:hover {
|
73 |
+
background-color: rgba(255, 255, 255, 0.3);
|
74 |
+
}
|
75 |
+
|
76 |
+
.footer {
|
77 |
+
text-align: center;
|
78 |
+
margin-top: 30px;
|
79 |
+
color: #ccc;
|
80 |
+
font-size: 0.9rem;
|
81 |
+
}
|
82 |
+
|
83 |
+
@media (max-width: 767px) {
|
84 |
+
h1 {
|
85 |
+
font-size: 1.6rem;
|
86 |
+
}
|
87 |
+
|
88 |
+
table {
|
89 |
+
width: 100%;
|
90 |
+
}
|
91 |
+
|
92 |
+
th, td {
|
93 |
+
padding: 10px 12px;
|
94 |
+
font-size: 1rem;
|
95 |
+
}
|
96 |
+
}
|
97 |
+
</style>
|
98 |
+
</head>
|
99 |
+
<body>
|
100 |
+
|
101 |
+
<!-- Page Title -->
|
102 |
+
<h1>Stored Results</h1>
|
103 |
+
|
104 |
+
<!-- Stats Section -->
|
105 |
+
<div class="stats-container">
|
106 |
+
<h2>Total Patients: {{ total_patients }}</h2>
|
107 |
+
<h2>Total with Tumor: {{ tumor_count }}</h2>
|
108 |
+
<h2>Total without Tumor: {{ no_tumor_count }}</h2>
|
109 |
+
</div>
|
110 |
+
|
111 |
+
<!-- Table Container -->
|
112 |
+
<div class="table-container">
|
113 |
+
<table>
|
114 |
+
<thead>
|
115 |
+
<tr>
|
116 |
+
<th>First Name</th>
|
117 |
+
<th>Last Name</th>
|
118 |
+
<th>Email</th>
|
119 |
+
<th>Phone</th>
|
120 |
+
<th>Gender</th>
|
121 |
+
<th>Age</th>
|
122 |
+
<th>Prediction</th>
|
123 |
+
<th>Confidence Score</th>
|
124 |
+
<th>Timestamp</th>
|
125 |
+
</tr>
|
126 |
+
</thead>
|
127 |
+
<tbody>
|
128 |
+
{% for result in results %}
|
129 |
+
<tr>
|
130 |
+
<td>{{ result.firstname }}</td>
|
131 |
+
<td>{{ result.lastname }}</td>
|
132 |
+
<td>{{ result.email }}</td>
|
133 |
+
<td>{{ result.phone }}</td>
|
134 |
+
<td>{{ result.gender }}</td>
|
135 |
+
<td>{{ result.age }}</td>
|
136 |
+
<td>{{ result.prediction }}</td>
|
137 |
+
<td>{{ result.confidence_score }}</td>
|
138 |
+
<td>{{ result.timestamp }}</td>
|
139 |
+
</tr>
|
140 |
+
{% endfor %}
|
141 |
+
</tbody>
|
142 |
+
</table>
|
143 |
+
</div>
|
144 |
+
|
145 |
+
<!-- Footer -->
|
146 |
+
<div class="footer">
|
147 |
+
<p>© 2024 Brain Tumor Detection - All Rights Reserved</p>
|
148 |
+
</div>
|
149 |
+
|
150 |
+
</body>
|
151 |
+
</html>
|
templates/resultbt.html
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype html>
|
2 |
+
<html lang="en">
|
3 |
+
|
4 |
+
<head>
|
5 |
+
<!-- Required meta tags -->
|
6 |
+
<meta charset="utf-8">
|
7 |
+
<meta name="viewport" content="width=device-width, initial-scale=1">
|
8 |
+
|
9 |
+
<!-- Bootstrap CSS -->
|
10 |
+
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0-beta3/dist/css/bootstrap.min.css" rel="stylesheet"
|
11 |
+
integrity="sha384-eOJMYsd53ii+scO/bJGFsiCZc+5NDVN2yr8+0RDqr0Ql0h+rP48ckxlpbzKgwra6" crossorigin="anonymous">
|
12 |
+
|
13 |
+
<!-- Custom Styles -->
|
14 |
+
<style type="text/css">
|
15 |
+
body {
|
16 |
+
background-image: url(static/brain.gif);
|
17 |
+
background-position: center;
|
18 |
+
background-size: cover;
|
19 |
+
font-family: 'Roboto', sans-serif;
|
20 |
+
margin-top: 40px;
|
21 |
+
color: #fff;
|
22 |
+
}
|
23 |
+
|
24 |
+
.navbar {
|
25 |
+
background-color: #212121 !important;
|
26 |
+
}
|
27 |
+
|
28 |
+
.navbar-brand {
|
29 |
+
font-weight: bold;
|
30 |
+
font-size: 1.5rem;
|
31 |
+
}
|
32 |
+
|
33 |
+
.regform {
|
34 |
+
width: 800px;
|
35 |
+
background-color: rgba(253, 252, 252, 0.8);
|
36 |
+
margin: auto;
|
37 |
+
color: #0f0f0f;
|
38 |
+
padding: 20px;
|
39 |
+
text-align: center;
|
40 |
+
border-radius: 15px 15px 0px 0px;
|
41 |
+
box-shadow: 0 10px 15px rgba(0, 0, 0, 0.5);
|
42 |
+
}
|
43 |
+
|
44 |
+
.regform h1 {
|
45 |
+
font-size: 2rem;
|
46 |
+
font-weight: bold;
|
47 |
+
}
|
48 |
+
|
49 |
+
.main-form {
|
50 |
+
width: 800px;
|
51 |
+
margin: auto;
|
52 |
+
background-color: rgba(0, 0, 0, 0.7);
|
53 |
+
padding: 30px;
|
54 |
+
border-radius: 10px;
|
55 |
+
color: #FFFFFF;
|
56 |
+
box-shadow: 0 10px 15px rgba(0, 0, 0, 0.7);
|
57 |
+
}
|
58 |
+
|
59 |
+
.main-form p {
|
60 |
+
font-size: 1.2rem;
|
61 |
+
line-height: 1.8;
|
62 |
+
}
|
63 |
+
|
64 |
+
.main-form p i {
|
65 |
+
font-style: italic;
|
66 |
+
color: #28a745;
|
67 |
+
}
|
68 |
+
|
69 |
+
.footer {
|
70 |
+
text-align: center;
|
71 |
+
margin-top: 30px;
|
72 |
+
font-size: 0.9rem;
|
73 |
+
color: #ccc;
|
74 |
+
}
|
75 |
+
|
76 |
+
/* Responsive design */
|
77 |
+
@media (max-width: 767px) {
|
78 |
+
.regform h1 {
|
79 |
+
font-size: 1.6rem;
|
80 |
+
}
|
81 |
+
|
82 |
+
.main-form {
|
83 |
+
padding: 20px;
|
84 |
+
}
|
85 |
+
|
86 |
+
.main-form p {
|
87 |
+
font-size: 1rem;
|
88 |
+
}
|
89 |
+
}
|
90 |
+
</style>
|
91 |
+
|
92 |
+
<title>Brain Tumor Detection</title>
|
93 |
+
</head>
|
94 |
+
|
95 |
+
<body>
|
96 |
+
<!-- Navbar -->
|
97 |
+
<nav class="navbar navbar-expand-lg navbar-dark bg-dark">
|
98 |
+
<div class="container-fluid">
|
99 |
+
<a class="navbar-brand" href="/">CNN</a>
|
100 |
+
<button class="navbar-toggler" type="button" data-bs-toggle="collapse"
|
101 |
+
data-bs-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false"
|
102 |
+
aria-label="Toggle navigation">
|
103 |
+
<span class="navbar-toggler-icon"></span>
|
104 |
+
</button>
|
105 |
+
<div class="collapse navbar-collapse" id="navbarSupportedContent">
|
106 |
+
<ul class="navbar-nav ms-auto mb-2 mb-lg-0">
|
107 |
+
<li class="nav-item">
|
108 |
+
<a class="nav-link" href="/dbresults">MongoDB</a>
|
109 |
+
</li>
|
110 |
+
</ul>
|
111 |
+
</div>
|
112 |
+
</div>
|
113 |
+
</nav>
|
114 |
+
|
115 |
+
<!-- Result Form -->
|
116 |
+
<div class='regform mt-3'>
|
117 |
+
<h1>Brain Tumor Test Results</h1>
|
118 |
+
</div>
|
119 |
+
|
120 |
+
<div class='main-form'>
|
121 |
+
<div>
|
122 |
+
<div class="col" style='margin-top: 30px; margin-bottom: 30px;'>
|
123 |
+
<p><strong>First Name:</strong> {{fn}}</p>
|
124 |
+
<p><strong>Last Name:</strong> {{ln}}</p>
|
125 |
+
<p><strong>Age:</strong> {{age}}</p>
|
126 |
+
<p><strong>Gender:</strong> {{gender}}</p>
|
127 |
+
|
128 |
+
|
129 |
+
<div>
|
130 |
+
<p><strong>Result:</strong> <i>{{r}}</i></p>
|
131 |
+
</div>
|
132 |
+
</div>
|
133 |
+
</div>
|
134 |
+
</div>
|
135 |
+
|
136 |
+
<!-- Footer -->
|
137 |
+
<div class="footer">
|
138 |
+
<p>© 2024 Brain Tumor Detection - All Rights Reserved</p>
|
139 |
+
</div>
|
140 |
+
|
141 |
+
<!-- Bootstrap Bundle with Popper -->
|
142 |
+
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0-beta3/dist/js/bootstrap.bundle.min.js"
|
143 |
+
integrity="sha384-JEW9xMcG8R+pH31jmWH6WWP0WintQrMb4s7ZOdauHnUtxwoG2vI5DkLtS3qm9Ekf"
|
144 |
+
crossorigin="anonymous"></script>
|
145 |
+
</body>
|
146 |
+
|
147 |
+
</html>
|