loras
Browse files- app-controlnetlora.py +323 -0
- static/controlnetlora.html +412 -0
- static/txt2imglora.html +1 -1
app-controlnetlora.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import traceback
|
5 |
+
from pydantic import BaseModel
|
6 |
+
|
7 |
+
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
9 |
+
from fastapi.responses import (
|
10 |
+
StreamingResponse,
|
11 |
+
JSONResponse,
|
12 |
+
HTMLResponse,
|
13 |
+
FileResponse,
|
14 |
+
)
|
15 |
+
|
16 |
+
from diffusers import (
|
17 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
18 |
+
ControlNetModel,
|
19 |
+
LCMScheduler,
|
20 |
+
)
|
21 |
+
from compel import Compel
|
22 |
+
import torch
|
23 |
+
|
24 |
+
from canny_gpu import SobelOperator
|
25 |
+
|
26 |
+
# from controlnet_aux import OpenposeDetector
|
27 |
+
# import cv2
|
28 |
+
|
29 |
+
try:
|
30 |
+
import intel_extension_for_pytorch as ipex
|
31 |
+
except:
|
32 |
+
pass
|
33 |
+
from PIL import Image
|
34 |
+
import numpy as np
|
35 |
+
import gradio as gr
|
36 |
+
import io
|
37 |
+
import uuid
|
38 |
+
import os
|
39 |
+
import time
|
40 |
+
import psutil
|
41 |
+
|
42 |
+
|
43 |
+
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
44 |
+
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
45 |
+
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
46 |
+
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
47 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
48 |
+
|
49 |
+
WIDTH = 512
|
50 |
+
HEIGHT = 512
|
51 |
+
|
52 |
+
|
53 |
+
# check if MPS is available OSX only M1/M2/M3 chips
|
54 |
+
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
55 |
+
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
56 |
+
device = torch.device(
|
57 |
+
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
58 |
+
)
|
59 |
+
|
60 |
+
# change to torch.float16 to save GPU memory
|
61 |
+
torch_dtype = torch.float16
|
62 |
+
|
63 |
+
print(f"TIMEOUT: {TIMEOUT}")
|
64 |
+
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
65 |
+
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
|
66 |
+
print(f"device: {device}")
|
67 |
+
|
68 |
+
if mps_available:
|
69 |
+
device = torch.device("mps")
|
70 |
+
device = "cpu"
|
71 |
+
torch_dtype = torch.float32
|
72 |
+
|
73 |
+
controlnet_canny = ControlNetModel.from_pretrained(
|
74 |
+
"lllyasviel/control_v11p_sd15_canny", torch_dtype=torch_dtype
|
75 |
+
).to(device)
|
76 |
+
|
77 |
+
canny_torch = SobelOperator(device=device)
|
78 |
+
|
79 |
+
model_id = "nitrosocke/mo-di-diffusion"
|
80 |
+
lcm_lora_id = "lcm-sd/lcm-sd1.5-lora"
|
81 |
+
|
82 |
+
if SAFETY_CHECKER == "True":
|
83 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
84 |
+
model_id,
|
85 |
+
controlnet=controlnet_canny,
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
89 |
+
model_id,
|
90 |
+
safety_checker=None,
|
91 |
+
controlnet=controlnet_canny,
|
92 |
+
)
|
93 |
+
|
94 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
95 |
+
pipe.set_progress_bar_config(disable=True)
|
96 |
+
pipe.to(device=device, dtype=torch_dtype).to(device)
|
97 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
98 |
+
|
99 |
+
|
100 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
101 |
+
pipe.enable_attention_slicing()
|
102 |
+
|
103 |
+
# Load LCM LoRA
|
104 |
+
pipe.load_lora_weights(
|
105 |
+
lcm_lora_id,
|
106 |
+
weight_name="lcm_sd_lora.safetensors",
|
107 |
+
adapter_name="lcm",
|
108 |
+
use_auth_token=HF_TOKEN,
|
109 |
+
)
|
110 |
+
|
111 |
+
compel_proc = Compel(
|
112 |
+
tokenizer=pipe.tokenizer,
|
113 |
+
text_encoder=pipe.text_encoder,
|
114 |
+
truncate_long_prompts=False,
|
115 |
+
)
|
116 |
+
if TORCH_COMPILE:
|
117 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
118 |
+
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
119 |
+
|
120 |
+
pipe(
|
121 |
+
prompt="warmup",
|
122 |
+
image=[Image.new("RGB", (768, 768))],
|
123 |
+
control_image=[Image.new("RGB", (768, 768))],
|
124 |
+
)
|
125 |
+
|
126 |
+
|
127 |
+
user_queue_map = {}
|
128 |
+
|
129 |
+
|
130 |
+
class InputParams(BaseModel):
|
131 |
+
seed: int = 2159232
|
132 |
+
prompt: str
|
133 |
+
guidance_scale: float = 8.0
|
134 |
+
strength: float = 0.5
|
135 |
+
steps: int = 4
|
136 |
+
lcm_steps: int = 50
|
137 |
+
width: int = WIDTH
|
138 |
+
height: int = HEIGHT
|
139 |
+
controlnet_scale: float = 0.8
|
140 |
+
controlnet_start: float = 0.0
|
141 |
+
controlnet_end: float = 1.0
|
142 |
+
canny_low_threshold: float = 0.31
|
143 |
+
canny_high_threshold: float = 0.78
|
144 |
+
debug_canny: bool = False
|
145 |
+
|
146 |
+
|
147 |
+
def predict(
|
148 |
+
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
|
149 |
+
):
|
150 |
+
generator = torch.manual_seed(params.seed)
|
151 |
+
|
152 |
+
control_image = canny_torch(
|
153 |
+
input_image, params.canny_low_threshold, params.canny_high_threshold
|
154 |
+
)
|
155 |
+
results = pipe(
|
156 |
+
control_image=control_image,
|
157 |
+
prompt_embeds=prompt_embeds,
|
158 |
+
generator=generator,
|
159 |
+
image=input_image,
|
160 |
+
strength=params.strength,
|
161 |
+
num_inference_steps=params.steps,
|
162 |
+
guidance_scale=params.guidance_scale,
|
163 |
+
width=params.width,
|
164 |
+
height=params.height,
|
165 |
+
output_type="pil",
|
166 |
+
controlnet_conditioning_scale=params.controlnet_scale,
|
167 |
+
control_guidance_start=params.controlnet_start,
|
168 |
+
control_guidance_end=params.controlnet_end,
|
169 |
+
)
|
170 |
+
nsfw_content_detected = (
|
171 |
+
results.nsfw_content_detected[0]
|
172 |
+
if "nsfw_content_detected" in results
|
173 |
+
else False
|
174 |
+
)
|
175 |
+
if nsfw_content_detected:
|
176 |
+
return None
|
177 |
+
result_image = results.images[0]
|
178 |
+
if params.debug_canny:
|
179 |
+
# paste control_image on top of result_image
|
180 |
+
w0, h0 = (200, 200)
|
181 |
+
control_image = control_image.resize((w0, h0))
|
182 |
+
w1, h1 = result_image.size
|
183 |
+
result_image.paste(control_image, (w1 - w0, h1 - h0))
|
184 |
+
|
185 |
+
return result_image
|
186 |
+
|
187 |
+
|
188 |
+
app = FastAPI()
|
189 |
+
app.add_middleware(
|
190 |
+
CORSMiddleware,
|
191 |
+
allow_origins=["*"],
|
192 |
+
allow_credentials=True,
|
193 |
+
allow_methods=["*"],
|
194 |
+
allow_headers=["*"],
|
195 |
+
)
|
196 |
+
|
197 |
+
|
198 |
+
@app.websocket("/ws")
|
199 |
+
async def websocket_endpoint(websocket: WebSocket):
|
200 |
+
await websocket.accept()
|
201 |
+
if MAX_QUEUE_SIZE > 0 and len(user_queue_map) >= MAX_QUEUE_SIZE:
|
202 |
+
print("Server is full")
|
203 |
+
await websocket.send_json({"status": "error", "message": "Server is full"})
|
204 |
+
await websocket.close()
|
205 |
+
return
|
206 |
+
|
207 |
+
try:
|
208 |
+
uid = str(uuid.uuid4())
|
209 |
+
print(f"New user connected: {uid}")
|
210 |
+
await websocket.send_json(
|
211 |
+
{"status": "success", "message": "Connected", "userId": uid}
|
212 |
+
)
|
213 |
+
user_queue_map[uid] = {"queue": asyncio.Queue()}
|
214 |
+
await websocket.send_json(
|
215 |
+
{"status": "start", "message": "Start Streaming", "userId": uid}
|
216 |
+
)
|
217 |
+
await handle_websocket_data(websocket, uid)
|
218 |
+
except WebSocketDisconnect as e:
|
219 |
+
logging.error(f"WebSocket Error: {e}, {uid}")
|
220 |
+
traceback.print_exc()
|
221 |
+
finally:
|
222 |
+
print(f"User disconnected: {uid}")
|
223 |
+
queue_value = user_queue_map.pop(uid, None)
|
224 |
+
queue = queue_value.get("queue", None)
|
225 |
+
if queue:
|
226 |
+
while not queue.empty():
|
227 |
+
try:
|
228 |
+
queue.get_nowait()
|
229 |
+
except asyncio.QueueEmpty:
|
230 |
+
continue
|
231 |
+
|
232 |
+
|
233 |
+
@app.get("/queue_size")
|
234 |
+
async def get_queue_size():
|
235 |
+
queue_size = len(user_queue_map)
|
236 |
+
return JSONResponse({"queue_size": queue_size})
|
237 |
+
|
238 |
+
|
239 |
+
@app.get("/stream/{user_id}")
|
240 |
+
async def stream(user_id: uuid.UUID):
|
241 |
+
uid = str(user_id)
|
242 |
+
try:
|
243 |
+
user_queue = user_queue_map[uid]
|
244 |
+
queue = user_queue["queue"]
|
245 |
+
|
246 |
+
async def generate():
|
247 |
+
last_prompt: str = None
|
248 |
+
prompt_embeds: torch.Tensor = None
|
249 |
+
while True:
|
250 |
+
data = await queue.get()
|
251 |
+
input_image = data["image"]
|
252 |
+
params = data["params"]
|
253 |
+
if input_image is None:
|
254 |
+
continue
|
255 |
+
# avoid recalculate prompt embeds
|
256 |
+
if last_prompt != params.prompt:
|
257 |
+
print("new prompt")
|
258 |
+
prompt_embeds = compel_proc(params.prompt)
|
259 |
+
last_prompt = params.prompt
|
260 |
+
|
261 |
+
image = predict(
|
262 |
+
input_image,
|
263 |
+
params,
|
264 |
+
prompt_embeds,
|
265 |
+
)
|
266 |
+
if image is None:
|
267 |
+
continue
|
268 |
+
frame_data = io.BytesIO()
|
269 |
+
image.save(frame_data, format="JPEG")
|
270 |
+
frame_data = frame_data.getvalue()
|
271 |
+
if frame_data is not None and len(frame_data) > 0:
|
272 |
+
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
|
273 |
+
|
274 |
+
await asyncio.sleep(1.0 / 120.0)
|
275 |
+
|
276 |
+
return StreamingResponse(
|
277 |
+
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
|
278 |
+
)
|
279 |
+
except Exception as e:
|
280 |
+
logging.error(f"Streaming Error: {e}, {user_queue_map}")
|
281 |
+
traceback.print_exc()
|
282 |
+
return HTTPException(status_code=404, detail="User not found")
|
283 |
+
|
284 |
+
|
285 |
+
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
286 |
+
uid = str(user_id)
|
287 |
+
user_queue = user_queue_map[uid]
|
288 |
+
queue = user_queue["queue"]
|
289 |
+
if not queue:
|
290 |
+
return HTTPException(status_code=404, detail="User not found")
|
291 |
+
last_time = time.time()
|
292 |
+
try:
|
293 |
+
while True:
|
294 |
+
data = await websocket.receive_bytes()
|
295 |
+
params = await websocket.receive_json()
|
296 |
+
params = InputParams(**params)
|
297 |
+
pil_image = Image.open(io.BytesIO(data))
|
298 |
+
|
299 |
+
while not queue.empty():
|
300 |
+
try:
|
301 |
+
queue.get_nowait()
|
302 |
+
except asyncio.QueueEmpty:
|
303 |
+
continue
|
304 |
+
await queue.put({"image": pil_image, "params": params})
|
305 |
+
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
|
306 |
+
await websocket.send_json(
|
307 |
+
{
|
308 |
+
"status": "timeout",
|
309 |
+
"message": "Your session has ended",
|
310 |
+
"userId": uid,
|
311 |
+
}
|
312 |
+
)
|
313 |
+
await websocket.close()
|
314 |
+
return
|
315 |
+
|
316 |
+
except Exception as e:
|
317 |
+
logging.error(f"Error: {e}")
|
318 |
+
traceback.print_exc()
|
319 |
+
|
320 |
+
|
321 |
+
@app.get("/", response_class=HTMLResponse)
|
322 |
+
async def root():
|
323 |
+
return FileResponse("./static/controlnetlora.html")
|
static/controlnetlora.html
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype html>
|
2 |
+
<html>
|
3 |
+
|
4 |
+
<head>
|
5 |
+
<meta charset="UTF-8">
|
6 |
+
<title>Real-Time Latent Consistency Model ControlNet</title>
|
7 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
8 |
+
<script
|
9 |
+
src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
|
10 |
+
<script src="https://cdn.jsdelivr.net/npm/piexifjs@1.0.6/piexif.min.js"></script>
|
11 |
+
<script src="https://cdn.tailwindcss.com"></script>
|
12 |
+
<style type="text/tailwindcss">
|
13 |
+
.button {
|
14 |
+
@apply bg-gray-700 hover:bg-gray-800 text-white font-normal p-2 rounded disabled:bg-gray-300 dark:disabled:bg-gray-700 disabled:cursor-not-allowed dark:disabled:text-black
|
15 |
+
}
|
16 |
+
</style>
|
17 |
+
<script type="module">
|
18 |
+
const getValue = (id) => {
|
19 |
+
const el = document.querySelector(`${id}`)
|
20 |
+
if (el.type === "checkbox")
|
21 |
+
return el.checked;
|
22 |
+
return el.value;
|
23 |
+
}
|
24 |
+
const startBtn = document.querySelector("#start");
|
25 |
+
const stopBtn = document.querySelector("#stop");
|
26 |
+
const videoEl = document.querySelector("#webcam");
|
27 |
+
const imageEl = document.querySelector("#player");
|
28 |
+
const queueSizeEl = document.querySelector("#queue_size");
|
29 |
+
const errorEl = document.querySelector("#error");
|
30 |
+
const snapBtn = document.querySelector("#snap");
|
31 |
+
const webcamsEl = document.querySelector("#webcams");
|
32 |
+
|
33 |
+
function LCMLive(webcamVideo, liveImage) {
|
34 |
+
let websocket;
|
35 |
+
|
36 |
+
async function start() {
|
37 |
+
return new Promise((resolve, reject) => {
|
38 |
+
const websocketURL = `${window.location.protocol === "https:" ? "wss" : "ws"
|
39 |
+
}:${window.location.host}/ws`;
|
40 |
+
|
41 |
+
const socket = new WebSocket(websocketURL);
|
42 |
+
socket.onopen = () => {
|
43 |
+
console.log("Connected to websocket");
|
44 |
+
};
|
45 |
+
socket.onclose = () => {
|
46 |
+
console.log("Disconnected from websocket");
|
47 |
+
stop();
|
48 |
+
resolve({ "status": "disconnected" });
|
49 |
+
};
|
50 |
+
socket.onerror = (err) => {
|
51 |
+
console.error(err);
|
52 |
+
reject(err);
|
53 |
+
};
|
54 |
+
socket.onmessage = (event) => {
|
55 |
+
const data = JSON.parse(event.data);
|
56 |
+
switch (data.status) {
|
57 |
+
case "success":
|
58 |
+
break;
|
59 |
+
case "start":
|
60 |
+
const userId = data.userId;
|
61 |
+
initVideoStream(userId);
|
62 |
+
break;
|
63 |
+
case "timeout":
|
64 |
+
stop();
|
65 |
+
resolve({ "status": "timeout" });
|
66 |
+
case "error":
|
67 |
+
stop();
|
68 |
+
reject(data.message);
|
69 |
+
|
70 |
+
}
|
71 |
+
};
|
72 |
+
websocket = socket;
|
73 |
+
})
|
74 |
+
}
|
75 |
+
function switchCamera() {
|
76 |
+
const constraints = {
|
77 |
+
audio: false,
|
78 |
+
video: { width: 1024, height: 1024, deviceId: mediaDevices[webcamsEl.value].deviceId }
|
79 |
+
};
|
80 |
+
navigator.mediaDevices
|
81 |
+
.getUserMedia(constraints)
|
82 |
+
.then((mediaStream) => {
|
83 |
+
webcamVideo.removeEventListener("timeupdate", videoTimeUpdateHandler);
|
84 |
+
webcamVideo.srcObject = mediaStream;
|
85 |
+
webcamVideo.onloadedmetadata = () => {
|
86 |
+
webcamVideo.play();
|
87 |
+
webcamVideo.addEventListener("timeupdate", videoTimeUpdateHandler);
|
88 |
+
};
|
89 |
+
})
|
90 |
+
.catch((err) => {
|
91 |
+
console.error(`${err.name}: ${err.message}`);
|
92 |
+
});
|
93 |
+
}
|
94 |
+
|
95 |
+
async function videoTimeUpdateHandler() {
|
96 |
+
const dimension = getValue("input[name=dimension]:checked");
|
97 |
+
const [WIDTH, HEIGHT] = JSON.parse(dimension);
|
98 |
+
|
99 |
+
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
100 |
+
const videoW = webcamVideo.videoWidth;
|
101 |
+
const videoH = webcamVideo.videoHeight;
|
102 |
+
const aspectRatio = WIDTH / HEIGHT;
|
103 |
+
|
104 |
+
const ctx = canvas.getContext("2d");
|
105 |
+
ctx.drawImage(webcamVideo, videoW / 2 - videoH * aspectRatio / 2, 0, videoH * aspectRatio, videoH, 0, 0, WIDTH, HEIGHT)
|
106 |
+
const blob = await canvas.convertToBlob({ type: "image/jpeg", quality: 1 });
|
107 |
+
websocket.send(blob);
|
108 |
+
websocket.send(JSON.stringify({
|
109 |
+
"seed": getValue("#seed"),
|
110 |
+
"prompt": getValue("#prompt"),
|
111 |
+
"guidance_scale": getValue("#guidance-scale"),
|
112 |
+
"strength": getValue("#strength"),
|
113 |
+
"steps": getValue("#steps"),
|
114 |
+
"width": WIDTH,
|
115 |
+
"height": HEIGHT,
|
116 |
+
"controlnet_scale": getValue("#controlnet_scale"),
|
117 |
+
"controlnet_start": getValue("#controlnet_start"),
|
118 |
+
"controlnet_end": getValue("#controlnet_end"),
|
119 |
+
"canny_low_threshold": getValue("#canny_low_threshold"),
|
120 |
+
"canny_high_threshold": getValue("#canny_high_threshold"),
|
121 |
+
"debug_canny": getValue("#debug_canny")
|
122 |
+
}));
|
123 |
+
}
|
124 |
+
let mediaDevices = [];
|
125 |
+
async function initVideoStream(userId) {
|
126 |
+
liveImage.src = `/stream/${userId}`;
|
127 |
+
await navigator.mediaDevices.enumerateDevices()
|
128 |
+
.then(devices => {
|
129 |
+
const cameras = devices.filter(device => device.kind === 'videoinput');
|
130 |
+
mediaDevices = cameras;
|
131 |
+
webcamsEl.innerHTML = "";
|
132 |
+
cameras.forEach((camera, index) => {
|
133 |
+
const option = document.createElement("option");
|
134 |
+
option.value = index;
|
135 |
+
option.innerText = camera.label;
|
136 |
+
webcamsEl.appendChild(option);
|
137 |
+
option.selected = index === 0;
|
138 |
+
});
|
139 |
+
webcamsEl.addEventListener("change", switchCamera);
|
140 |
+
})
|
141 |
+
.catch(err => {
|
142 |
+
console.error(err);
|
143 |
+
});
|
144 |
+
const constraints = {
|
145 |
+
audio: false,
|
146 |
+
video: { width: 1024, height: 1024, deviceId: mediaDevices[0].deviceId }
|
147 |
+
};
|
148 |
+
navigator.mediaDevices
|
149 |
+
.getUserMedia(constraints)
|
150 |
+
.then((mediaStream) => {
|
151 |
+
webcamVideo.srcObject = mediaStream;
|
152 |
+
webcamVideo.onloadedmetadata = () => {
|
153 |
+
webcamVideo.play();
|
154 |
+
webcamVideo.addEventListener("timeupdate", videoTimeUpdateHandler);
|
155 |
+
};
|
156 |
+
})
|
157 |
+
.catch((err) => {
|
158 |
+
console.error(`${err.name}: ${err.message}`);
|
159 |
+
});
|
160 |
+
}
|
161 |
+
|
162 |
+
|
163 |
+
async function stop() {
|
164 |
+
websocket.close();
|
165 |
+
navigator.mediaDevices.getUserMedia({ video: true }).then((mediaStream) => {
|
166 |
+
mediaStream.getTracks().forEach((track) => track.stop());
|
167 |
+
});
|
168 |
+
webcamVideo.removeEventListener("timeupdate", videoTimeUpdateHandler);
|
169 |
+
webcamsEl.removeEventListener("change", switchCamera);
|
170 |
+
webcamVideo.srcObject = null;
|
171 |
+
}
|
172 |
+
return {
|
173 |
+
start,
|
174 |
+
stop
|
175 |
+
}
|
176 |
+
}
|
177 |
+
function toggleMessage(type) {
|
178 |
+
errorEl.hidden = false;
|
179 |
+
errorEl.scrollIntoView();
|
180 |
+
switch (type) {
|
181 |
+
case "error":
|
182 |
+
errorEl.innerText = "To many users are using the same GPU, please try again later.";
|
183 |
+
errorEl.classList.toggle("bg-red-300", "text-red-900");
|
184 |
+
break;
|
185 |
+
case "success":
|
186 |
+
errorEl.innerText = "Your session has ended, please start a new one.";
|
187 |
+
errorEl.classList.toggle("bg-green-300", "text-green-900");
|
188 |
+
break;
|
189 |
+
}
|
190 |
+
setTimeout(() => {
|
191 |
+
errorEl.hidden = true;
|
192 |
+
}, 2000);
|
193 |
+
}
|
194 |
+
function snapImage() {
|
195 |
+
try {
|
196 |
+
const zeroth = {};
|
197 |
+
const exif = {};
|
198 |
+
const gps = {};
|
199 |
+
zeroth[piexif.ImageIFD.Make] = "LCM Image-to-Image ControNet";
|
200 |
+
zeroth[piexif.ImageIFD.ImageDescription] = `prompt: ${getValue("#prompt")} | seed: ${getValue("#seed")} | guidance_scale: ${getValue("#guidance-scale")} | strength: ${getValue("#strength")} | controlnet_start: ${getValue("#controlnet_start")} | controlnet_end: ${getValue("#controlnet_end")} | steps: ${getValue("#steps")}`;
|
201 |
+
zeroth[piexif.ImageIFD.Software] = "https://github.com/radames/Real-Time-Latent-Consistency-Model";
|
202 |
+
exif[piexif.ExifIFD.DateTimeOriginal] = new Date().toISOString();
|
203 |
+
|
204 |
+
const exifObj = { "0th": zeroth, "Exif": exif, "GPS": gps };
|
205 |
+
const exifBytes = piexif.dump(exifObj);
|
206 |
+
|
207 |
+
const canvas = document.createElement("canvas");
|
208 |
+
canvas.width = imageEl.naturalWidth;
|
209 |
+
canvas.height = imageEl.naturalHeight;
|
210 |
+
const ctx = canvas.getContext("2d");
|
211 |
+
ctx.drawImage(imageEl, 0, 0);
|
212 |
+
const dataURL = canvas.toDataURL("image/jpeg");
|
213 |
+
const withExif = piexif.insert(exifBytes, dataURL);
|
214 |
+
|
215 |
+
const a = document.createElement("a");
|
216 |
+
a.href = withExif;
|
217 |
+
a.download = `lcm_txt_2_img${Date.now()}.png`;
|
218 |
+
a.click();
|
219 |
+
} catch (err) {
|
220 |
+
console.log(err);
|
221 |
+
}
|
222 |
+
}
|
223 |
+
|
224 |
+
|
225 |
+
const lcmLive = LCMLive(videoEl, imageEl);
|
226 |
+
startBtn.addEventListener("click", async () => {
|
227 |
+
try {
|
228 |
+
startBtn.disabled = true;
|
229 |
+
snapBtn.disabled = false;
|
230 |
+
const res = await lcmLive.start();
|
231 |
+
startBtn.disabled = false;
|
232 |
+
if (res.status === "timeout")
|
233 |
+
toggleMessage("success")
|
234 |
+
} catch (err) {
|
235 |
+
console.log(err);
|
236 |
+
toggleMessage("error")
|
237 |
+
startBtn.disabled = false;
|
238 |
+
}
|
239 |
+
});
|
240 |
+
stopBtn.addEventListener("click", () => {
|
241 |
+
lcmLive.stop();
|
242 |
+
});
|
243 |
+
window.addEventListener("beforeunload", () => {
|
244 |
+
lcmLive.stop();
|
245 |
+
});
|
246 |
+
snapBtn.addEventListener("click", snapImage);
|
247 |
+
setInterval(() =>
|
248 |
+
fetch("/queue_size")
|
249 |
+
.then((res) => res.json())
|
250 |
+
.then((data) => {
|
251 |
+
queueSizeEl.innerText = data.queue_size;
|
252 |
+
})
|
253 |
+
.catch((err) => {
|
254 |
+
console.log(err);
|
255 |
+
})
|
256 |
+
, 5000);
|
257 |
+
</script>
|
258 |
+
</head>
|
259 |
+
|
260 |
+
<body class="text-black dark:bg-gray-900 dark:text-white">
|
261 |
+
<div class="fixed right-2 top-2 p-4 font-bold text-sm rounded-lg max-w-xs text-center" id="error">
|
262 |
+
</div>
|
263 |
+
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
264 |
+
<article class="text-center max-w-xl mx-auto">
|
265 |
+
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
266 |
+
<h2 class="text-2xl font-bold mb-4">ControlNet Lora</h2>
|
267 |
+
<p class="text-sm">
|
268 |
+
This demo showcases
|
269 |
+
<a href="https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7" target="_blank"
|
270 |
+
class="text-blue-500 underline hover:no-underline">LCM</a> Image to Image pipeline
|
271 |
+
using
|
272 |
+
<a href="https://github.com/huggingface/diffusers/tree/main/examples/community#latent-consistency-pipeline"
|
273 |
+
target="_blank" class="text-blue-500 underline hover:no-underline">Diffusers</a> with a MJPEG
|
274 |
+
stream server. Featuring <a href="https://huggingface.co/nitrosocke/mo-di-diffusion" target="_blank"
|
275 |
+
class="text-blue-500 underline hover:no-underline">Nitrosocke Mo-Di Diffusion</a>Model.
|
276 |
+
</p>
|
277 |
+
</article>
|
278 |
+
<div>
|
279 |
+
<h2 class="font-medium">Prompt</h2>
|
280 |
+
<p class="text-sm text-gray-500">
|
281 |
+
Change the prompt to generate different images, accepts <a
|
282 |
+
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md" target="_blank"
|
283 |
+
class="text-blue-500 underline hover:no-underline">Compel</a> syntax.
|
284 |
+
</p>
|
285 |
+
<div class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
|
286 |
+
<textarea type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 outline-none dark:text-black"
|
287 |
+
title="Prompt, this is an example, feel free to modify"
|
288 |
+
placeholder="Add your prompt here...">a magical princess with golden hair, modern disney style</textarea>
|
289 |
+
</div>
|
290 |
+
</div>
|
291 |
+
<div class="">
|
292 |
+
<details>
|
293 |
+
<summary class="font-medium cursor-pointer">Advanced Options</summary>
|
294 |
+
<div class="grid grid-cols-3 sm:grid-cols-6 items-center gap-3 py-3">
|
295 |
+
<label for="webcams" class="text-sm font-medium">Camera Options: </label>
|
296 |
+
<select id="webcams" class="text-sm border-2 border-gray-500 rounded-md font-light dark:text-black">
|
297 |
+
</select>
|
298 |
+
<div></div>
|
299 |
+
<label class="text-sm font-medium " for="steps">Inference Steps
|
300 |
+
</label>
|
301 |
+
<input type="range" id="steps" name="steps" min="1" max="8" value="4"
|
302 |
+
oninput="this.nextElementSibling.value = Number(this.value)">
|
303 |
+
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
304 |
+
4</output>
|
305 |
+
<label class="text-sm font-medium" for="guidance-scale">Guidance Scale
|
306 |
+
</label>
|
307 |
+
<input type="range" id="guidance-scale" name="guidance-scale" min="0" max="5" step="0.001"
|
308 |
+
value="0.3" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
309 |
+
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
310 |
+
0.3</output>
|
311 |
+
<!-- -->
|
312 |
+
<label class="text-sm font-medium" for="strength">Strength</label>
|
313 |
+
<input type="range" id="strength" name="strength" min="0.1" max="1" step="0.001" value="0.50"
|
314 |
+
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
315 |
+
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
316 |
+
0.5</output>
|
317 |
+
<!-- -->
|
318 |
+
<label class="text-sm font-medium" for="controlnet_scale">ControlNet Condition Scale</label>
|
319 |
+
<input type="range" id="controlnet_scale" name="controlnet_scale" min="0.0" max="1" step="0.001"
|
320 |
+
value="0.80" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
321 |
+
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
322 |
+
0.8</output>
|
323 |
+
<!-- -->
|
324 |
+
<label class="text-sm font-medium" for="controlnet_start">ControlNet Guidance Start</label>
|
325 |
+
<input type="range" id="controlnet_start" name="controlnet_start" min="0.0" max="1.0" step="0.001"
|
326 |
+
value="0.0" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
327 |
+
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
328 |
+
0.0</output>
|
329 |
+
<!-- -->
|
330 |
+
<label class="text-sm font-medium" for="controlnet_end">ControlNet Guidance End</label>
|
331 |
+
<input type="range" id="controlnet_end" name="controlnet_end" min="0.0" max="1.0" step="0.001"
|
332 |
+
value="0.8" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
333 |
+
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
334 |
+
0.8</output>
|
335 |
+
<!-- -->
|
336 |
+
<label class="text-sm font-medium" for="canny_low_threshold">Canny Low Threshold</label>
|
337 |
+
<input type="range" id="canny_low_threshold" name="canny_low_threshold" min="0.0" max="1.0"
|
338 |
+
step="0.001" value="0.1"
|
339 |
+
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
340 |
+
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
341 |
+
0.1</output>
|
342 |
+
<!-- -->
|
343 |
+
<label class="text-sm font-medium" for="canny_high_threshold">Canny High Threshold</label>
|
344 |
+
<input type="range" id="canny_high_threshold" name="canny_high_threshold" min="0.0" max="1.0"
|
345 |
+
step="0.001" value="0.2"
|
346 |
+
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
347 |
+
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
348 |
+
0.2</output>
|
349 |
+
<!-- -->
|
350 |
+
<label class="text-sm font-medium" for="seed">Seed</label>
|
351 |
+
<input type="number" id="seed" name="seed" value="299792458"
|
352 |
+
class="font-light border border-gray-700 text-right rounded-md p-2 dark:text-black">
|
353 |
+
<button
|
354 |
+
onclick="document.querySelector('#seed').value = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER)"
|
355 |
+
class="button">
|
356 |
+
Rand
|
357 |
+
</button>
|
358 |
+
<!-- -->
|
359 |
+
<!-- -->
|
360 |
+
<label class="text-sm font-medium" for="dimension">Image Dimensions</label>
|
361 |
+
<div class="col-span-2 flex gap-2">
|
362 |
+
<div class="flex gap-1">
|
363 |
+
<input type="radio" id="dimension512" name="dimension" value="[512,512]" checked
|
364 |
+
class="cursor-pointer">
|
365 |
+
<label for="dimension512" class="text-sm cursor-pointer">512x512</label>
|
366 |
+
</div>
|
367 |
+
<div class="flex gap-1">
|
368 |
+
<input type="radio" id="dimension768" name="dimension" value="[768,768]"
|
369 |
+
lass="cursor-pointer">
|
370 |
+
<label for="dimension768" class="text-sm cursor-pointer">768x768</label>
|
371 |
+
</div>
|
372 |
+
</div>
|
373 |
+
<!-- -->
|
374 |
+
<!-- -->
|
375 |
+
<label class="text-sm font-medium" for="debug_canny">Debug Canny</label>
|
376 |
+
<div class="col-span-2 flex gap-2">
|
377 |
+
<input type="checkbox" id="debug_canny" name="debug_canny" class="cursor-pointer">
|
378 |
+
<label for="debug_canny" class="text-sm cursor-pointer"></label>
|
379 |
+
</div>
|
380 |
+
<div></div>
|
381 |
+
<!-- -->
|
382 |
+
</div>
|
383 |
+
</details>
|
384 |
+
</div>
|
385 |
+
<div class="flex gap-3">
|
386 |
+
<button id="start" class="button">
|
387 |
+
Start
|
388 |
+
</button>
|
389 |
+
<button id="stop" class="button">
|
390 |
+
Stop
|
391 |
+
</button>
|
392 |
+
<button id="snap" disabled class="button ml-auto">
|
393 |
+
Snapshot
|
394 |
+
</button>
|
395 |
+
</div>
|
396 |
+
<div class="relative rounded-lg border border-slate-300 overflow-hidden">
|
397 |
+
<img id="player" class="w-full aspect-square rounded-lg"
|
398 |
+
src="">
|
399 |
+
<div class="absolute top-0 left-0 w-1/4 aspect-square">
|
400 |
+
<video id="webcam" class="w-full aspect-square relative z-10 object-cover" playsinline autoplay muted
|
401 |
+
loop></video>
|
402 |
+
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 448" width="100"
|
403 |
+
class="w-full p-4 absolute top-0 opacity-20 z-0">
|
404 |
+
<path fill="currentColor"
|
405 |
+
d="M224 256a128 128 0 1 0 0-256 128 128 0 1 0 0 256zm-45.7 48A178.3 178.3 0 0 0 0 482.3 29.7 29.7 0 0 0 29.7 512h388.6a29.7 29.7 0 0 0 29.7-29.7c0-98.5-79.8-178.3-178.3-178.3h-91.4z" />
|
406 |
+
</svg>
|
407 |
+
</div>
|
408 |
+
</div>
|
409 |
+
</main>
|
410 |
+
</body>
|
411 |
+
|
412 |
+
</html>
|
static/txt2imglora.html
CHANGED
@@ -201,7 +201,7 @@
|
|
201 |
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
202 |
<article class="text-center max-w-xl mx-auto">
|
203 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
204 |
-
<h2 class="text-2xl font-bold mb-4">Text to Image</h2>
|
205 |
<p class="text-sm">
|
206 |
This demo showcases
|
207 |
<a href="https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7" target="_blank"
|
|
|
201 |
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
202 |
<article class="text-center max-w-xl mx-auto">
|
203 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
204 |
+
<h2 class="text-2xl font-bold mb-4">Text to Image Lora</h2>
|
205 |
<p class="text-sm">
|
206 |
This demo showcases
|
207 |
<a href="https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7" target="_blank"
|