Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,79 +1,84 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import AutoProcessor, VoxtralForConditionalGeneration
|
| 4 |
-
|
| 5 |
-
MAX_TOKENS = 32000
|
| 6 |
-
|
| 7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
-
print(f"*** Device: {device}")
|
| 9 |
-
|
| 10 |
-
# List models
|
| 11 |
-
dict_models = {'Voxtral-Mini-3B-2507': '
|
| 12 |
-
'Voxtral-Small-24B-2507': '
|
| 13 |
-
|
| 14 |
-
# Load models
|
| 15 |
-
list_processor = []
|
| 16 |
-
list_model = []
|
| 17 |
-
for model_name in dict_models.values():
|
| 18 |
-
list_processor.append(AutoProcessor.from_pretrained(model_name))
|
| 19 |
-
list_model.append(VoxtralForConditionalGeneration.from_pretrained(model_name,
|
| 20 |
-
torch_dtype=torch.bfloat16,
|
| 21 |
-
device_map=device))
|
| 22 |
-
# Supported languages
|
| 23 |
-
dict_languages = {"English": "en",
|
| 24 |
-
"French": "fr",
|
| 25 |
-
"German": "de",
|
| 26 |
-
"Spanish": "es",
|
| 27 |
-
"Italian": "it",
|
| 28 |
-
"Portuguese": "pt",
|
| 29 |
-
"Dutch": "nl",
|
| 30 |
-
"Hindi": "hi"}
|
| 31 |
-
|
| 32 |
-
@spaces.GPU
|
| 33 |
-
def process_transcript(audio_path,
|
| 34 |
-
"""Process audio with selected Voxtral model and return the generated response"""
|
| 35 |
-
|
| 36 |
-
inputs = processor.apply_transcrition_request(language=language, audio=audio_path, model_id=model_name)
|
| 37 |
-
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 38 |
-
|
| 39 |
-
outputs = model.generate(**inputs, max_new_tokens=MAX_TOKENS)
|
| 40 |
-
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 41 |
-
|
| 42 |
-
return decoded_outputs[0]
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
# Define Gradio interface
|
| 47 |
-
with gr.Blocks(title="Transcription") as transcript:
|
| 48 |
-
gr.Markdown("# Audio Transcription")
|
| 49 |
-
gr.Markdown("#### Choose the language of the audio and the model, then set an audio file to get its transcription.")
|
| 50 |
-
gr.Markdown("#### **(Voxtral handles audios up to 30 minutes for transcription)**")
|
| 51 |
-
|
| 52 |
-
with gr.Row():
|
| 53 |
-
with gr.Column():
|
| 54 |
-
sel_language = gr.Dropdown(
|
| 55 |
-
choices=list(dict_languages.keys()),
|
| 56 |
-
value="English",
|
| 57 |
-
label="Select the language of the audio file:"
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
sel_model = gr.Radio(dict_models.keys(), label="Select the model:")
|
| 61 |
-
|
| 62 |
-
with gr.Column():
|
| 63 |
-
sel_audio = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload an audio file or record via microphone:")
|
| 64 |
-
|
| 65 |
-
submit_transcript = gr.Button("Extract Transcription", variant="primary")
|
| 66 |
-
|
| 67 |
-
with gr.Column():
|
| 68 |
-
text_transcript = gr.Textbox(label="Generated Response", lines=10)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoProcessor, VoxtralForConditionalGeneration
|
| 4 |
+
|
| 5 |
+
MAX_TOKENS = 32000
|
| 6 |
+
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
print(f"*** Device: {device}")
|
| 9 |
+
|
| 10 |
+
# List models
|
| 11 |
+
dict_models = {'Voxtral-Mini-3B-2507': 'mistralai/Voxtral-Mini-3B-2507',
|
| 12 |
+
'Voxtral-Small-24B-2507': 'mistralai/Voxtral-Small-24B-2507'}
|
| 13 |
+
|
| 14 |
+
# Load models
|
| 15 |
+
list_processor = []
|
| 16 |
+
list_model = []
|
| 17 |
+
for model_name in dict_models.values():
|
| 18 |
+
list_processor.append(AutoProcessor.from_pretrained(model_name))
|
| 19 |
+
list_model.append(VoxtralForConditionalGeneration.from_pretrained(model_name,
|
| 20 |
+
torch_dtype=torch.bfloat16,
|
| 21 |
+
device_map=device))
|
| 22 |
+
# Supported languages
|
| 23 |
+
dict_languages = {"English": "en",
|
| 24 |
+
"French": "fr",
|
| 25 |
+
"German": "de",
|
| 26 |
+
"Spanish": "es",
|
| 27 |
+
"Italian": "it",
|
| 28 |
+
"Portuguese": "pt",
|
| 29 |
+
"Dutch": "nl",
|
| 30 |
+
"Hindi": "hi"}
|
| 31 |
+
|
| 32 |
+
@spaces.GPU
|
| 33 |
+
def process_transcript(audio_path, model, processor, language):
|
| 34 |
+
"""Process audio with selected Voxtral model and return the generated response"""
|
| 35 |
+
|
| 36 |
+
inputs = processor.apply_transcrition_request(language=language, audio=audio_path, model_id=model_name)
|
| 37 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 38 |
+
|
| 39 |
+
outputs = model.generate(**inputs, max_new_tokens=MAX_TOKENS)
|
| 40 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 41 |
+
|
| 42 |
+
return decoded_outputs[0]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# Define Gradio interface
|
| 47 |
+
with gr.Blocks(title="Transcription") as transcript:
|
| 48 |
+
gr.Markdown("# Audio Transcription")
|
| 49 |
+
gr.Markdown("#### Choose the language of the audio and the model, then set an audio file to get its transcription.")
|
| 50 |
+
gr.Markdown("#### **(Voxtral handles audios up to 30 minutes for transcription)**")
|
| 51 |
+
|
| 52 |
+
with gr.Row():
|
| 53 |
+
with gr.Column():
|
| 54 |
+
sel_language = gr.Dropdown(
|
| 55 |
+
choices=list(dict_languages.keys()),
|
| 56 |
+
value="English",
|
| 57 |
+
label="Select the language of the audio file:"
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
sel_model = gr.Radio(dict_models.keys(), label="Select the model:")
|
| 61 |
+
|
| 62 |
+
with gr.Column():
|
| 63 |
+
sel_audio = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload an audio file or record via microphone:")
|
| 64 |
+
|
| 65 |
+
submit_transcript = gr.Button("Extract Transcription", variant="primary")
|
| 66 |
+
|
| 67 |
+
with gr.Column():
|
| 68 |
+
text_transcript = gr.Textbox(label="Generated Response", lines=10)
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
model_index = list(dict_models.keys()).index(sel_model)
|
| 72 |
+
submit_transcript.click(
|
| 73 |
+
fn=process_transcript,
|
| 74 |
+
inputs=[dict_languages[sel_language], list_model[model_index],
|
| 75 |
+
list_processor[model_index], sel_audio],
|
| 76 |
+
outputs=text_transcript
|
| 77 |
+
)
|
| 78 |
+
except:
|
| 79 |
+
text_transcript = 'Error'
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Launch the app
|
| 83 |
+
if __name__ == "__main__":
|
| 84 |
+
transcript.launch(share=True)
|