Custom multipage
Browse files
app_pages/__pycache__/ocr_comparator.cpython-37.pyc
CHANGED
Binary files a/app_pages/__pycache__/ocr_comparator.cpython-37.pyc and b/app_pages/__pycache__/ocr_comparator.cpython-37.pyc differ
|
|
app_pages/ocr_comparator.py
CHANGED
@@ -19,917 +19,910 @@ from pytesseract import Output
|
|
19 |
import os
|
20 |
from mycolorpy import colorlist as mcp
|
21 |
|
|
|
22 |
###################################################################################################
|
23 |
-
##
|
24 |
###################################################################################################
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
st.session_state
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
img_saved = img.save(out_image_path)
|
276 |
-
|
277 |
-
# Read image
|
278 |
-
out_image_orig = Image.open(out_image_path)
|
279 |
-
out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB)
|
280 |
-
|
281 |
-
return out_image_path, out_image_orig, out_image_cv2
|
282 |
-
|
283 |
-
###
|
284 |
-
@st.experimental_memo(show_spinner=False)
|
285 |
-
def easyocr_detect(_in_reader, in_image_path, in_params):
|
286 |
-
"""Detection with EasyOCR
|
287 |
-
|
288 |
-
Args:
|
289 |
-
_in_reader (EasyOCR reader) : the previously initialized instance
|
290 |
-
in_image_path (string ) : locally saved image path
|
291 |
-
in_params (list) : list with the parameters for detection
|
292 |
-
|
293 |
-
Returns:
|
294 |
-
list : list of the boxes coordinates
|
295 |
-
exception on error, string 'OK' otherwise
|
296 |
-
"""
|
297 |
-
try:
|
298 |
-
dict_param = in_params[1]
|
299 |
-
detection_result = _in_reader.detect(in_image_path,
|
300 |
-
#width_ths=0.7,
|
301 |
-
#mag_ratio=1.5
|
302 |
-
**dict_param
|
303 |
-
)
|
304 |
-
easyocr_coordinates = detection_result[0][0]
|
305 |
-
|
306 |
-
# The format of the coordinate is as follows: [x_min, x_max, y_min, y_max]
|
307 |
-
# Format boxes coordinates for draw
|
308 |
-
out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates))
|
309 |
-
out_status = 'OK'
|
310 |
-
except Exception as e:
|
311 |
-
out_easyocr_boxes_coordinates = []
|
312 |
-
out_status = e
|
313 |
-
|
314 |
-
return out_easyocr_boxes_coordinates, out_status
|
315 |
-
|
316 |
-
###
|
317 |
-
@st.experimental_memo(show_spinner=False)
|
318 |
-
def ppocr_detect(_in_reader, in_image_path):
|
319 |
-
"""Detection with PPOCR
|
320 |
-
|
321 |
-
Args:
|
322 |
-
_in_reader (PPOCR reader) : the previously initialized instance
|
323 |
-
in_image_path (string ) : locally saved image path
|
324 |
-
|
325 |
-
Returns:
|
326 |
-
list : list of the boxes coordinates
|
327 |
-
exception on error, string 'OK' otherwise
|
328 |
-
"""
|
329 |
-
# PPOCR detection method
|
330 |
-
try:
|
331 |
-
out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False)
|
332 |
-
out_status = 'OK'
|
333 |
-
except Exception as e:
|
334 |
-
out_ppocr_boxes_coordinates = []
|
335 |
-
out_status = e
|
336 |
-
|
337 |
-
return out_ppocr_boxes_coordinates, out_status
|
338 |
-
|
339 |
-
###
|
340 |
-
@st.experimental_memo(show_spinner=False)
|
341 |
-
def mmocr_detect(_in_reader, in_image_path):
|
342 |
-
"""Detection with MMOCR
|
343 |
-
|
344 |
-
Args:
|
345 |
-
_in_reader (EasyORC reader) : the previously initialized instance
|
346 |
-
in_image_path (string) : locally saved image path
|
347 |
-
in_params (list) : list with the parameters
|
348 |
-
|
349 |
-
Returns:
|
350 |
-
list : list of the boxes coordinates
|
351 |
-
exception on error, string 'OK' otherwise
|
352 |
-
"""
|
353 |
-
# MMOCR detection method
|
354 |
-
out_mmocr_boxes_coordinates = []
|
355 |
-
try:
|
356 |
-
det_result = _in_reader.readtext(in_image_path, details=True)
|
357 |
-
bboxes_list = [res['boundary_result'] for res in det_result]
|
358 |
-
for bboxes in bboxes_list:
|
359 |
-
for bbox in bboxes:
|
360 |
-
if len(bbox) > 9:
|
361 |
-
min_x = min(bbox[0:-1:2])
|
362 |
-
min_y = min(bbox[1:-1:2])
|
363 |
-
max_x = max(bbox[0:-1:2])
|
364 |
-
max_y = max(bbox[1:-1:2])
|
365 |
-
#box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
|
366 |
-
else:
|
367 |
-
min_x = min(bbox[0:-1:2])
|
368 |
-
min_y = min(bbox[1::2])
|
369 |
-
max_x = max(bbox[0:-1:2])
|
370 |
-
max_y = max(bbox[1::2])
|
371 |
-
box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ]
|
372 |
-
out_mmocr_boxes_coordinates.append(box4)
|
373 |
-
out_status = 'OK'
|
374 |
-
except Exception as e:
|
375 |
-
out_status = e
|
376 |
-
|
377 |
-
return out_mmocr_boxes_coordinates, out_status
|
378 |
-
|
379 |
-
###
|
380 |
-
def cropped_1box(in_box, in_img):
|
381 |
-
"""Construction of an cropped image corresponding to an area of the initial image
|
382 |
-
|
383 |
-
Args:
|
384 |
-
in_box (list) : box with coordinates
|
385 |
-
in_img (matrix) : image
|
386 |
-
|
387 |
-
Returns:
|
388 |
-
matrix : cropped image
|
389 |
-
"""
|
390 |
-
box_ar = np.array(in_box).astype(np.int64)
|
391 |
-
x_min = box_ar[:, 0].min()
|
392 |
-
x_max = box_ar[:, 0].max()
|
393 |
-
y_min = box_ar[:, 1].min()
|
394 |
-
y_max = box_ar[:, 1].max()
|
395 |
-
out_cropped = in_img[y_min:y_max, x_min:x_max]
|
396 |
-
|
397 |
-
return out_cropped
|
398 |
-
|
399 |
-
###
|
400 |
-
@st.experimental_memo(show_spinner=False)
|
401 |
-
def tesserocr_detect(in_image_path, _in_img, in_params):
|
402 |
-
"""Detection with Tesseract
|
403 |
-
|
404 |
-
Args:
|
405 |
-
in_image_path (string) : locally saved image path
|
406 |
-
_in_img (PIL.Image) : image to consider
|
407 |
-
in_params (list) : list with the parameters for detection
|
408 |
-
|
409 |
-
Returns:
|
410 |
-
list : list of the boxes coordinates
|
411 |
-
exception on error, string 'OK' otherwise
|
412 |
-
"""
|
413 |
-
try:
|
414 |
-
dict_param = in_params[1]
|
415 |
-
df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME)
|
416 |
-
|
417 |
-
df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \
|
418 |
-
[d['left'] + d['width'], d['top']], \
|
419 |
-
[d['left'] + d['width'], d['top'] + d['height']], \
|
420 |
-
[d['left'], d['top'] + d['height']], \
|
421 |
-
], axis=1)
|
422 |
-
out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list()
|
423 |
-
out_status = 'OK'
|
424 |
-
except Exception as e:
|
425 |
-
out_tesserocr_boxes_coordinates = []
|
426 |
-
out_status = e
|
427 |
-
|
428 |
-
return out_tesserocr_boxes_coordinates, out_status
|
429 |
-
|
430 |
-
###
|
431 |
-
@st.experimental_memo(show_spinner=False)
|
432 |
-
def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color):
|
433 |
-
"""Detection process for each OCR solution
|
434 |
-
|
435 |
-
Args:
|
436 |
-
in_image_path (string) : locally saved image path
|
437 |
-
_in_list_images (list) : list of original image
|
438 |
-
_in_list_readers (list) : list with previously initialized reader's instances
|
439 |
-
in_list_params (list) : list with dict parameters for each OCR solution
|
440 |
-
in_color (tuple) : color for boxes around text
|
441 |
-
|
442 |
-
Returns:
|
443 |
-
list: list of detection results images
|
444 |
-
list: list of boxes coordinates
|
445 |
-
"""
|
446 |
-
## ------- EasyOCR Text detection
|
447 |
-
with st.spinner('EasyOCR Text detection in progress ...'):
|
448 |
-
easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \
|
449 |
-
in_image_path, in_list_params[0])
|
450 |
-
# Visualization
|
451 |
-
if easyocr_boxes_coordinates:
|
452 |
-
easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \
|
453 |
-
in_color, 'None', 3)
|
454 |
-
else:
|
455 |
-
easyocr_boxes_coordinates = easyocr_status
|
456 |
-
##
|
457 |
-
|
458 |
-
## ------- PPOCR Text detection
|
459 |
-
with st.spinner('PPOCR Text detection in progress ...'):
|
460 |
-
ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path)
|
461 |
-
# Visualization
|
462 |
-
if ppocr_boxes_coordinates:
|
463 |
-
ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \
|
464 |
-
in_color, 'None', 3)
|
465 |
-
else:
|
466 |
-
ppocr_image_detect = ppocr_status
|
467 |
-
##
|
468 |
-
|
469 |
-
## ------- MMOCR Text detection
|
470 |
-
with st.spinner('MMOCR Text detection in progress ...'):
|
471 |
-
mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[2], in_image_path)
|
472 |
-
# Visualization
|
473 |
-
if mmocr_boxes_coordinates:
|
474 |
-
mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \
|
475 |
-
in_color, 'None', 3)
|
476 |
-
else:
|
477 |
-
mmocr_image_detect = mmocr_status
|
478 |
-
##
|
479 |
-
|
480 |
-
## ------- Tesseract Text detection
|
481 |
-
with st.spinner('Tesseract Text detection in progress ...'):
|
482 |
-
tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(in_image_path, \
|
483 |
-
_in_list_images[0], \
|
484 |
-
in_list_params[3])
|
485 |
-
# Visualization
|
486 |
-
if tesserocr_status == 'OK':
|
487 |
-
tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\
|
488 |
-
in_color, 'None', 3)
|
489 |
else:
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
###
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
"""
|
637 |
-
progress_bar = st.progress(0)
|
638 |
-
out_list_text_easyocr = []
|
639 |
-
out_list_confidence_easyocr = []
|
640 |
-
## ------- EasyOCR Text recognition
|
641 |
-
try:
|
642 |
-
step = 0*len(in_list_images) # first recognition process
|
643 |
-
nb_steps = 4 * len(in_list_images)
|
644 |
-
for ind_img, cropped in enumerate(in_list_images):
|
645 |
-
result = _in_reader_easyocr.recognize(cropped, **in_params)
|
646 |
-
try:
|
647 |
-
out_list_text_easyocr.append(result[0][1])
|
648 |
-
out_list_confidence_easyocr.append(np.round(100*result[0][2], 1))
|
649 |
-
except:
|
650 |
-
out_list_text_easyocr.append('Not recognize')
|
651 |
-
out_list_confidence_easyocr.append(100.)
|
652 |
-
progress_bar.progress((step+ind_img+1)/nb_steps)
|
653 |
-
out_status = 'OK'
|
654 |
-
except Exception as e:
|
655 |
-
out_status = e
|
656 |
-
progress_bar.empty()
|
657 |
-
|
658 |
-
return out_list_text_easyocr, out_list_confidence_easyocr, out_status
|
659 |
-
|
660 |
-
###
|
661 |
-
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
662 |
-
def ppocr_recog(in_list_images, in_params):
|
663 |
-
"""Recognition with PPOCR
|
664 |
-
|
665 |
-
Args:
|
666 |
-
in_list_images (list) : list of cropped images
|
667 |
-
in_params (dict) : parameters for recognition
|
668 |
-
|
669 |
-
Returns:
|
670 |
-
list : list of recognized text
|
671 |
-
list : list of recognition confidence
|
672 |
-
string/Exception : recognition status
|
673 |
-
"""
|
674 |
-
## ------- PPOCR Text recognition
|
675 |
-
out_list_text_ppocr = []
|
676 |
-
out_list_confidence_ppocr = []
|
677 |
-
try:
|
678 |
-
reader_ppocr = PaddleOCR(**in_params)
|
679 |
-
step = 1*len(in_list_images) # second recognition process
|
680 |
-
nb_steps = 4 * len(in_list_images)
|
681 |
-
progress_bar = st.progress(step/nb_steps)
|
682 |
-
|
683 |
-
for ind_img, cropped in enumerate(in_list_images):
|
684 |
-
result = reader_ppocr.ocr(cropped, det=False, cls=False)
|
685 |
-
try:
|
686 |
-
out_list_text_ppocr.append(result[0][0])
|
687 |
-
out_list_confidence_ppocr.append(np.round(100*result[0][1], 1))
|
688 |
-
except:
|
689 |
-
out_list_text_ppocr.append('Not recognize')
|
690 |
-
out_list_confidence_ppocr.append(100.)
|
691 |
-
progress_bar.progress((step+ind_img+1)/nb_steps)
|
692 |
-
out_status = 'OK'
|
693 |
-
except Exception as e:
|
694 |
-
out_status = e
|
695 |
-
progress_bar.empty()
|
696 |
-
|
697 |
-
return out_list_text_ppocr, out_list_confidence_ppocr, out_status
|
698 |
-
|
699 |
-
###
|
700 |
-
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
701 |
-
def mmocr_recog(in_list_images, in_params):
|
702 |
-
"""Recognition with MMOCR
|
703 |
-
|
704 |
-
Args:
|
705 |
-
in_list_images (list) : list of cropped images
|
706 |
-
in_params (dict) : parameters for recognition
|
707 |
-
|
708 |
-
Returns:
|
709 |
-
list : list of recognized text
|
710 |
-
list : list of recognition confidence
|
711 |
-
string/Exception : recognition status
|
712 |
-
"""
|
713 |
-
## ------- MMOCR Text recognition
|
714 |
-
out_list_text_mmocr = []
|
715 |
-
out_list_confidence_mmocr = []
|
716 |
-
try:
|
717 |
-
reader_mmocr = MMOCR(det=None, **in_params)
|
718 |
-
step = 2*len(in_list_images) # third recognition process
|
719 |
-
nb_steps = 4 * len(in_list_images)
|
720 |
-
progress_bar = st.progress(step/nb_steps)
|
721 |
-
|
722 |
-
for ind_img, cropped in enumerate(in_list_images):
|
723 |
-
result = reader_mmocr.readtext(cropped, details=True)
|
724 |
-
try:
|
725 |
-
out_list_text_mmocr.append(result[0]['text'])
|
726 |
-
out_list_confidence_mmocr.append(np.round(100* \
|
727 |
-
(np.array(result[0]['score']).mean()), 1))
|
728 |
-
except:
|
729 |
-
out_list_text_mmocr.append('Not recognize')
|
730 |
-
out_list_confidence_mmocr.append(100.)
|
731 |
-
progress_bar.progress((step+ind_img+1)/nb_steps)
|
732 |
-
out_status = 'OK'
|
733 |
-
except Exception as e:
|
734 |
-
out_status = e
|
735 |
-
progress_bar.empty()
|
736 |
-
|
737 |
-
return out_list_text_mmocr, out_list_confidence_mmocr, out_status
|
738 |
-
|
739 |
-
###
|
740 |
-
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
741 |
-
def tesserocr_recog(in_img, in_params, in_nb_images):
|
742 |
-
"""Recognition with Tesseract
|
743 |
-
|
744 |
-
Args:
|
745 |
-
in_image_cv (matrix) : original image
|
746 |
-
in_params (dict) : parameters for recognition
|
747 |
-
in_nb_images : nb cropped images (used for progress bar)
|
748 |
-
|
749 |
-
Returns:
|
750 |
-
Pandas data frame : recognition results
|
751 |
-
string/Exception : recognition status
|
752 |
-
"""
|
753 |
-
## ------- Tesseract Text recognition
|
754 |
-
step = 3*in_nb_images # fourth recognition process
|
755 |
-
nb_steps = 4 * in_nb_images
|
756 |
-
progress_bar = st.progress(step/nb_steps)
|
757 |
-
|
758 |
-
try:
|
759 |
-
out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME)
|
760 |
-
|
761 |
-
out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \
|
762 |
[d['left'] + d['width'], d['top']], \
|
763 |
-
[d['left']+d['width'], d['top']+d['height']], \
|
764 |
[d['left'], d['top'] + d['height']], \
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
for num, box_ in enumerate(in_boxes_coordinates):
|
800 |
-
box = np.array(box_).astype(np.int64)
|
801 |
-
|
802 |
-
# For each box : draw the results of each recognizer
|
803 |
-
for ind_r in range(nb_readers-1):
|
804 |
-
confid = np.round(in_list_confid[ind_r][num], 0)
|
805 |
-
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
|
806 |
-
if confid < in_conf_threshold:
|
807 |
-
text_color = (0, 0, 0)
|
808 |
else:
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
|
|
|
|
828 |
else:
|
829 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
830 |
|
831 |
-
list_reco_images[ind_tessocr] = \
|
832 |
-
cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \
|
833 |
-
(box[2][0], box[2][1]), rgb_color, -1)
|
834 |
-
try:
|
835 |
list_reco_images[ind_tessocr] = \
|
836 |
-
cv2.
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
col.image(list_images[ind_col+2], width=column_width[ind_col], \
|
903 |
-
use_column_width=True)
|
904 |
-
else:
|
905 |
-
col.write(list_images[ind_col+2], use_column_width=True)
|
906 |
-
st.session_state.columns_size = columns_size
|
907 |
-
st.session_state.column_width = column_width
|
908 |
-
st.session_state.columns_color = columns_color
|
909 |
|
910 |
-
###
|
911 |
-
@st.cache(show_spinner=False)
|
912 |
-
def get_demo():
|
913 |
-
|
914 |
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
|
920 |
-
|
921 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
922 |
|
923 |
-
return out_img_demo_1, out_img_demo_2
|
924 |
|
925 |
-
###
|
926 |
-
def raz():
|
927 |
-
st.session_state.list_coordinates = []
|
928 |
|
929 |
-
###################################################################################################
|
930 |
-
## MAIN
|
931 |
-
###################################################################################################
|
932 |
-
def app():
|
933 |
##----------- Initializations ---------------------------------------------------------------------
|
934 |
#print("PID : ", os.getpid())
|
935 |
|
@@ -987,7 +980,7 @@ def app():
|
|
987 |
with st.form("form1"):
|
988 |
col1, col2 = st.columns(2, ) #gap="medium")
|
989 |
col1.markdown("##### Original image")
|
990 |
-
col1.image(list_images[0], width=
|
991 |
col2.markdown("##### Hyperparameters values for detection")
|
992 |
|
993 |
with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \
|
|
|
19 |
import os
|
20 |
from mycolorpy import colorlist as mcp
|
21 |
|
22 |
+
|
23 |
###################################################################################################
|
24 |
+
## MAIN
|
25 |
###################################################################################################
|
26 |
+
def app():
|
27 |
|
28 |
+
###################################################################################################
|
29 |
+
## FUNCTIONS
|
30 |
+
###################################################################################################
|
31 |
+
|
32 |
+
@st.cache
|
33 |
+
def convert_df(in_df):
|
34 |
+
"""Convert data frame function, used by download button
|
35 |
+
|
36 |
+
Args:
|
37 |
+
in_df (data frame): data frame to convert
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
data frame: converted data frame
|
41 |
+
"""
|
42 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
43 |
+
return in_df.to_csv().encode('utf-8')
|
44 |
+
|
45 |
+
###
|
46 |
+
def easyocr_coord_convert(in_list_coord):
|
47 |
+
"""Convert easyocr coordinates to standard format used by others functions
|
48 |
+
|
49 |
+
Args:
|
50 |
+
in_list_coord (list of numbers): format [x_min, x_max, y_min, y_max]
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
list of lists: format [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ]
|
54 |
+
"""
|
55 |
+
|
56 |
+
coord = in_list_coord
|
57 |
+
return [[coord[0], coord[2]], [coord[1], coord[2]], [coord[1], coord[3]], [coord[0], coord[3]]]
|
58 |
+
|
59 |
+
###
|
60 |
+
@st.cache(show_spinner=False)
|
61 |
+
def initializations():
|
62 |
+
"""Initializations for the app
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
list of strings : list of OCR solutions names
|
66 |
+
(['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract'])
|
67 |
+
dict : names and indices of the OCR solutions
|
68 |
+
({'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3})
|
69 |
+
list of dicts : list of languages supported by each OCR solution
|
70 |
+
list of int : columns for recognition details results
|
71 |
+
dict : confidence color scale
|
72 |
+
plotly figure : confidence color scale figure
|
73 |
+
"""
|
74 |
+
# the readers considered
|
75 |
+
out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']
|
76 |
+
out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}
|
77 |
+
|
78 |
+
# Columns for recognition details results
|
79 |
+
out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract
|
80 |
+
|
81 |
+
# Dicts of laguages supported by each reader
|
82 |
+
out_dict_lang_easyocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Angika': 'ang', \
|
83 |
+
'Arabic': 'ar', 'Assamese': 'as', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
|
84 |
+
'Bulgarian': 'bg', 'Bihari': 'bh', 'Bhojpuri': 'bho', 'Bengali': 'bn', 'Bosnian': 'bs', \
|
85 |
+
'Simplified Chinese': 'ch_sim', 'Traditional Chinese': 'ch_tra', 'Chechen': 'che', \
|
86 |
+
'Czech': 'cs', 'Welsh': 'cy', 'Danish': 'da', 'Dargwa': 'dar', 'German': 'de', \
|
87 |
+
'English': 'en', 'Spanish': 'es', 'Estonian': 'et', 'Persian (Farsi)': 'fa', 'French': 'fr', \
|
88 |
+
'Irish': 'ga', 'Goan Konkani': 'gom', 'Hindi': 'hi', 'Croatian': 'hr', 'Hungarian': 'hu', \
|
89 |
+
'Indonesian': 'id', 'Ingush': 'inh', 'Icelandic': 'is', 'Italian': 'it', 'Japanese': 'ja', \
|
90 |
+
'Kabardian': 'kbd', 'Kannada': 'kn', 'Korean': 'ko', 'Kurdish': 'ku', 'Latin': 'la', \
|
91 |
+
'Lak': 'lbe', 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Latvian': 'lv', 'Magahi': 'mah', \
|
92 |
+
'Maithili': 'mai', 'Maori': 'mi', 'Mongolian': 'mn', 'Marathi': 'mr', 'Malay': 'ms', \
|
93 |
+
'Maltese': 'mt', 'Nepali': 'ne', 'Newari': 'new', 'Dutch': 'nl', 'Norwegian': 'no', \
|
94 |
+
'Occitan': 'oc', 'Pali': 'pi', 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', \
|
95 |
+
'Russian': 'ru', 'Serbian (cyrillic)': 'rs_cyrillic', 'Serbian (latin)': 'rs_latin', \
|
96 |
+
'Nagpuri': 'sck', 'Slovak': 'sk', 'Slovenian': 'sl', 'Albanian': 'sq', 'Swedish': 'sv', \
|
97 |
+
'Swahili': 'sw', 'Tamil': 'ta', 'Tabassaran': 'tab', 'Telugu': 'te', 'Thai': 'th', \
|
98 |
+
'Tajik': 'tjk', 'Tagalog': 'tl', 'Turkish': 'tr', 'Uyghur': 'ug', 'Ukranian': 'uk', \
|
99 |
+
'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi'}
|
100 |
+
|
101 |
+
out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \
|
102 |
+
'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
|
103 |
+
'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \
|
104 |
+
'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \
|
105 |
+
'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \
|
106 |
+
'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \
|
107 |
+
'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \
|
108 |
+
'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \
|
109 |
+
'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \
|
110 |
+
'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \
|
111 |
+
'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \
|
112 |
+
'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \
|
113 |
+
'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \
|
114 |
+
'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \
|
115 |
+
'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \
|
116 |
+
'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'}
|
117 |
+
|
118 |
+
out_dict_lang_mmocr = {'English & Chinese': 'en'}
|
119 |
+
|
120 |
+
out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \
|
121 |
+
'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \
|
122 |
+
'Azerbaijani': 'aze', 'Basque': 'eus','Belarusian': 'bel','Bengali': 'ben','Bosnian': 'bos', \
|
123 |
+
'Breton': 'bre', 'Bulgarian': 'bul','Burmese': 'mya','Catalan; Valencian': 'cat', \
|
124 |
+
'Cebuano': 'ceb', 'Central Khmer': 'khm','Cherokee': 'chr','Chinese - Simplified': 'chi_sim', \
|
125 |
+
'Chinese - Traditional': 'chi_tra','Corsican': 'cos','Croatian': 'hrv','Czech': 'ces', \
|
126 |
+
'Danish':'dan','Dutch; Flemish':'nld','Dzongkha':'dzo','English, Middle (1100-1500)':'enm', \
|
127 |
+
'English': 'eng','Esperanto': 'epo','Estonian': 'est','Faroese': 'fao', \
|
128 |
+
'Filipino (old - Tagalog)': 'fil','Finnish': 'fin','French, Middle (ca.1400-1600)': 'frm', \
|
129 |
+
'French': 'fra','Galician': 'glg','Georgian - Old': 'kat_old','Georgian': 'kat', \
|
130 |
+
'German - Fraktur': 'frk','German': 'deu','Greek, Modern (1453-)': 'ell','Gujarati': 'guj', \
|
131 |
+
'Haitian; Haitian Creole': 'hat','Hebrew': 'heb','Hindi': 'hin','Hungarian': 'hun', \
|
132 |
+
'Icelandic': 'isl','Indonesian': 'ind','Inuktitut': 'iku','Irish': 'gle', \
|
133 |
+
'Italian - Old': 'ita_old','Italian': 'ita','Japanese': 'jpn','Javanese': 'jav', \
|
134 |
+
'Kannada': 'kan','Kazakh': 'kaz','Kirghiz; Kyrgyz': 'kir','Korean (vertical)': 'kor_vert', \
|
135 |
+
'Korean': 'kor','Kurdish (Arabic Script)': 'kur_ara','Lao': 'lao','Latin': 'lat', \
|
136 |
+
'Latvian':'lav','Lithuanian':'lit','Luxembourgish':'ltz','Macedonian':'mkd','Malay':'msa', \
|
137 |
+
'Malayalam': 'mal','Maltese': 'mlt','Maori': 'mri','Marathi': 'mar','Mongolian': 'mon', \
|
138 |
+
'Nepali': 'nep','Norwegian': 'nor','Occitan (post 1500)': 'oci', \
|
139 |
+
'Orientation and script detection module':'osd','Oriya':'ori','Panjabi; Punjabi':'pan', \
|
140 |
+
'Persian':'fas','Polish':'pol','Portuguese':'por','Pushto; Pashto':'pus','Quechua':'que', \
|
141 |
+
'Romanian; Moldavian; Moldovan': 'ron','Russian': 'rus','Sanskrit': 'san', \
|
142 |
+
'Scottish Gaelic': 'gla','Serbian - Latin': 'srp_latn','Serbian': 'srp','Sindhi': 'snd', \
|
143 |
+
'Sinhala; Sinhalese': 'sin','Slovak': 'slk','Slovenian': 'slv', \
|
144 |
+
'Spanish; Castilian - Old': 'spa_old','Spanish; Castilian': 'spa','Sundanese': 'sun', \
|
145 |
+
'Swahili': 'swa','Swedish': 'swe','Syriac': 'syr','Tajik': 'tgk','Tamil': 'tam', \
|
146 |
+
'Tatar':'tat','Telugu':'tel','Thai':'tha','Tibetan':'bod','Tigrinya':'tir','Tonga':'ton', \
|
147 |
+
'Turkish': 'tur','Uighur; Uyghur': 'uig','Ukrainian': 'ukr','Urdu': 'urd', \
|
148 |
+
'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \
|
149 |
+
'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'}
|
150 |
+
|
151 |
+
out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, out_dict_lang_mmocr, \
|
152 |
+
out_dict_lang_tesseract]
|
153 |
+
|
154 |
+
# Initialization of detection form
|
155 |
+
if 'columns_size' not in st.session_state:
|
156 |
+
st.session_state.columns_size = [2] + [1 for x in out_reader_type_list[1:]]
|
157 |
+
if 'column_width' not in st.session_state:
|
158 |
+
st.session_state.column_width = [500] + [400 for x in out_reader_type_list[1:]]
|
159 |
+
if 'columns_color' not in st.session_state:
|
160 |
+
st.session_state.columns_color = ["rgb(228,26,28)"] + \
|
161 |
+
["rgb(0,0,0)" for x in out_reader_type_list[1:]]
|
162 |
+
if 'list_coordinates' not in st.session_state:
|
163 |
+
st.session_state.list_coordinates = []
|
164 |
+
|
165 |
+
# Confidence color scale
|
166 |
+
out_list_confid = list(np.arange(0,101,1))
|
167 |
+
out_list_grad = mcp.gen_color_normalized(cmap="Greens",data_arr=np.array(out_list_confid))
|
168 |
+
out_dict_back_colors = {out_list_confid[i]: out_list_grad[i] \
|
169 |
+
for i in range(len(out_list_confid))}
|
170 |
+
|
171 |
+
list_y = [1 for i in out_list_confid]
|
172 |
+
df_confid = pd.DataFrame({'% confidence scale': out_list_confid, 'y': list_y})
|
173 |
+
|
174 |
+
out_fig = px.scatter(df_confid, x='% confidence scale', y='y', \
|
175 |
+
hover_data={'% confidence scale': True, 'y': False},
|
176 |
+
color=out_dict_back_colors.values(), range_y=[0.9,1.1], range_x=[0,100],
|
177 |
+
color_discrete_map="identity",height=50,symbol='y',symbol_sequence=['square'])
|
178 |
+
out_fig.update_xaxes(showticklabels=False)
|
179 |
+
out_fig.update_yaxes(showticklabels=False, range=[0.1, 1.1], visible=False)
|
180 |
+
out_fig.update_traces(marker_size=50)
|
181 |
+
out_fig.update_layout(paper_bgcolor="white", margin=dict(b=0,r=0,t=0,l=0), xaxis_side="top", \
|
182 |
+
showlegend=False)
|
183 |
+
|
184 |
+
return out_reader_type_list, out_reader_type_dict, out_list_dict_lang, \
|
185 |
+
out_cols_size, out_dict_back_colors, out_fig
|
186 |
+
|
187 |
+
###
|
188 |
+
@st.experimental_memo(show_spinner=False)
|
189 |
+
def init_easyocr(in_params):
|
190 |
+
"""Initialization of easyOCR reader
|
191 |
+
|
192 |
+
Args:
|
193 |
+
in_params (list): list with the language
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
easyocr reader: the easyocr reader instance
|
197 |
+
"""
|
198 |
+
out_ocr = easyocr.Reader(in_params)
|
199 |
+
return out_ocr
|
200 |
+
|
201 |
+
###
|
202 |
+
@st.cache(show_spinner=False)
|
203 |
+
def init_ppocr(in_params):
|
204 |
+
"""Initialization of PPOCR reader
|
205 |
+
|
206 |
+
Args:
|
207 |
+
in_params (dict): dict with parameters
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
ppocr reader: the ppocr reader instance
|
211 |
+
"""
|
212 |
+
out_ocr = PaddleOCR(lang=in_params[0], **in_params[1])
|
213 |
+
return out_ocr
|
214 |
+
|
215 |
+
###
|
216 |
+
@st.experimental_memo(show_spinner=False)
|
217 |
+
def init_mmocr(in_params):
|
218 |
+
"""Initialization of MMOCR reader
|
219 |
+
|
220 |
+
Args:
|
221 |
+
in_params (dict): dict with parameters
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
mmocr reader: the ppocr reader instance
|
225 |
+
"""
|
226 |
+
out_ocr = MMOCR(recog=None, **in_params[1])
|
227 |
+
return out_ocr
|
228 |
+
|
229 |
+
###
|
230 |
+
def init_readers(in_list_params):
|
231 |
+
"""Initialization of the readers, and return them as list
|
232 |
+
|
233 |
+
Args:
|
234 |
+
in_list_params (list): list of dicts of parameters for each reader
|
235 |
+
|
236 |
+
Returns:
|
237 |
+
list: list of the reader's instances
|
238 |
+
"""
|
239 |
+
# Instantiations of the readers :
|
240 |
+
# - EasyOCR
|
241 |
+
with st.spinner("EasyOCR reader initialization in progress ..."):
|
242 |
+
reader_easyocr = init_easyocr([in_list_params[0][0]])
|
243 |
+
|
244 |
+
# - PPOCR
|
245 |
+
# Paddleocr
|
246 |
+
with st.spinner("PPOCR reader initialization in progress ..."):
|
247 |
+
reader_ppocr = init_ppocr(in_list_params[1])
|
248 |
+
|
249 |
+
# - MMOCR
|
250 |
+
with st.spinner("MMOCR reader initialization in progress ..."):
|
251 |
+
reader_mmocr = init_mmocr(in_list_params[2])
|
252 |
+
|
253 |
+
out_list_readers = [reader_easyocr, reader_ppocr, reader_mmocr]
|
254 |
+
|
255 |
+
return out_list_readers
|
256 |
+
|
257 |
+
###
|
258 |
+
def load_image(in_image_file):
|
259 |
+
"""Load input file and open it
|
260 |
+
|
261 |
+
Args:
|
262 |
+
in_image_file (string or Streamlit UploadedFile): image to consider
|
263 |
+
|
264 |
+
Returns:
|
265 |
+
string : locally saved image path (img.)
|
266 |
+
PIL.Image : input file opened with Pillow
|
267 |
+
matrix : input file opened with Opencv
|
268 |
+
"""
|
269 |
+
|
270 |
+
#if isinstance(in_image_file, str):
|
271 |
+
# out_image_path = "img."+in_image_file.split('.')[-1]
|
272 |
+
#else:
|
273 |
+
# out_image_path = "img."+in_image_file.name.split('.')[-1]
|
274 |
+
|
275 |
+
if isinstance(in_image_file, str):
|
276 |
+
out_image_path = "tmp_"+in_image_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
else:
|
278 |
+
out_image_path = "tmp_"+in_image_file.name
|
279 |
+
|
280 |
+
img = Image.open(in_image_file)
|
281 |
+
img_saved = img.save(out_image_path)
|
282 |
+
|
283 |
+
# Read image
|
284 |
+
out_image_orig = Image.open(out_image_path)
|
285 |
+
out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB)
|
286 |
+
|
287 |
+
return out_image_path, out_image_orig, out_image_cv2
|
288 |
+
|
289 |
+
###
|
290 |
+
@st.experimental_memo(show_spinner=False)
|
291 |
+
def easyocr_detect(_in_reader, in_image_path, in_params):
|
292 |
+
"""Detection with EasyOCR
|
293 |
+
|
294 |
+
Args:
|
295 |
+
_in_reader (EasyOCR reader) : the previously initialized instance
|
296 |
+
in_image_path (string ) : locally saved image path
|
297 |
+
in_params (list) : list with the parameters for detection
|
298 |
+
|
299 |
+
Returns:
|
300 |
+
list : list of the boxes coordinates
|
301 |
+
exception on error, string 'OK' otherwise
|
302 |
+
"""
|
303 |
+
try:
|
304 |
+
dict_param = in_params[1]
|
305 |
+
detection_result = _in_reader.detect(in_image_path,
|
306 |
+
#width_ths=0.7,
|
307 |
+
#mag_ratio=1.5
|
308 |
+
**dict_param
|
309 |
+
)
|
310 |
+
easyocr_coordinates = detection_result[0][0]
|
311 |
+
|
312 |
+
# The format of the coordinate is as follows: [x_min, x_max, y_min, y_max]
|
313 |
+
# Format boxes coordinates for draw
|
314 |
+
out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates))
|
315 |
+
out_status = 'OK'
|
316 |
+
except Exception as e:
|
317 |
+
out_easyocr_boxes_coordinates = []
|
318 |
+
out_status = e
|
319 |
+
|
320 |
+
return out_easyocr_boxes_coordinates, out_status
|
321 |
+
|
322 |
+
###
|
323 |
+
@st.experimental_memo(show_spinner=False)
|
324 |
+
def ppocr_detect(_in_reader, in_image_path):
|
325 |
+
"""Detection with PPOCR
|
326 |
+
|
327 |
+
Args:
|
328 |
+
_in_reader (PPOCR reader) : the previously initialized instance
|
329 |
+
in_image_path (string ) : locally saved image path
|
330 |
+
|
331 |
+
Returns:
|
332 |
+
list : list of the boxes coordinates
|
333 |
+
exception on error, string 'OK' otherwise
|
334 |
+
"""
|
335 |
+
# PPOCR detection method
|
336 |
+
try:
|
337 |
+
out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False)
|
338 |
+
out_status = 'OK'
|
339 |
+
except Exception as e:
|
340 |
+
out_ppocr_boxes_coordinates = []
|
341 |
+
out_status = e
|
342 |
+
|
343 |
+
return out_ppocr_boxes_coordinates, out_status
|
344 |
+
|
345 |
+
###
|
346 |
+
@st.experimental_memo(show_spinner=False)
|
347 |
+
def mmocr_detect(_in_reader, in_image_path):
|
348 |
+
"""Detection with MMOCR
|
349 |
+
|
350 |
+
Args:
|
351 |
+
_in_reader (EasyORC reader) : the previously initialized instance
|
352 |
+
in_image_path (string) : locally saved image path
|
353 |
+
in_params (list) : list with the parameters
|
354 |
+
|
355 |
+
Returns:
|
356 |
+
list : list of the boxes coordinates
|
357 |
+
exception on error, string 'OK' otherwise
|
358 |
+
"""
|
359 |
+
# MMOCR detection method
|
360 |
+
out_mmocr_boxes_coordinates = []
|
361 |
+
try:
|
362 |
+
det_result = _in_reader.readtext(in_image_path, details=True)
|
363 |
+
bboxes_list = [res['boundary_result'] for res in det_result]
|
364 |
+
for bboxes in bboxes_list:
|
365 |
+
for bbox in bboxes:
|
366 |
+
if len(bbox) > 9:
|
367 |
+
min_x = min(bbox[0:-1:2])
|
368 |
+
min_y = min(bbox[1:-1:2])
|
369 |
+
max_x = max(bbox[0:-1:2])
|
370 |
+
max_y = max(bbox[1:-1:2])
|
371 |
+
#box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
|
372 |
+
else:
|
373 |
+
min_x = min(bbox[0:-1:2])
|
374 |
+
min_y = min(bbox[1::2])
|
375 |
+
max_x = max(bbox[0:-1:2])
|
376 |
+
max_y = max(bbox[1::2])
|
377 |
+
box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ]
|
378 |
+
out_mmocr_boxes_coordinates.append(box4)
|
379 |
+
out_status = 'OK'
|
380 |
+
except Exception as e:
|
381 |
+
out_status = e
|
382 |
+
|
383 |
+
return out_mmocr_boxes_coordinates, out_status
|
384 |
+
|
385 |
+
###
|
386 |
+
def cropped_1box(in_box, in_img):
|
387 |
+
"""Construction of an cropped image corresponding to an area of the initial image
|
388 |
+
|
389 |
+
Args:
|
390 |
+
in_box (list) : box with coordinates
|
391 |
+
in_img (matrix) : image
|
392 |
+
|
393 |
+
Returns:
|
394 |
+
matrix : cropped image
|
395 |
+
"""
|
396 |
+
box_ar = np.array(in_box).astype(np.int64)
|
397 |
+
x_min = box_ar[:, 0].min()
|
398 |
+
x_max = box_ar[:, 0].max()
|
399 |
+
y_min = box_ar[:, 1].min()
|
400 |
+
y_max = box_ar[:, 1].max()
|
401 |
+
out_cropped = in_img[y_min:y_max, x_min:x_max]
|
402 |
+
|
403 |
+
return out_cropped
|
404 |
+
|
405 |
+
###
|
406 |
+
@st.experimental_memo(show_spinner=False)
|
407 |
+
def tesserocr_detect(in_image_path, _in_img, in_params):
|
408 |
+
"""Detection with Tesseract
|
409 |
+
|
410 |
+
Args:
|
411 |
+
in_image_path (string) : locally saved image path
|
412 |
+
_in_img (PIL.Image) : image to consider
|
413 |
+
in_params (list) : list with the parameters for detection
|
414 |
+
|
415 |
+
Returns:
|
416 |
+
list : list of the boxes coordinates
|
417 |
+
exception on error, string 'OK' otherwise
|
418 |
+
"""
|
419 |
+
try:
|
420 |
+
dict_param = in_params[1]
|
421 |
+
df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME)
|
422 |
+
|
423 |
+
df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
[d['left'] + d['width'], d['top']], \
|
425 |
+
[d['left'] + d['width'], d['top'] + d['height']], \
|
426 |
[d['left'], d['top'] + d['height']], \
|
427 |
+
], axis=1)
|
428 |
+
out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list()
|
429 |
+
out_status = 'OK'
|
430 |
+
except Exception as e:
|
431 |
+
out_tesserocr_boxes_coordinates = []
|
432 |
+
out_status = e
|
433 |
+
|
434 |
+
return out_tesserocr_boxes_coordinates, out_status
|
435 |
+
|
436 |
+
###
|
437 |
+
@st.experimental_memo(show_spinner=False)
|
438 |
+
def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color):
|
439 |
+
"""Detection process for each OCR solution
|
440 |
+
|
441 |
+
Args:
|
442 |
+
in_image_path (string) : locally saved image path
|
443 |
+
_in_list_images (list) : list of original image
|
444 |
+
_in_list_readers (list) : list with previously initialized reader's instances
|
445 |
+
in_list_params (list) : list with dict parameters for each OCR solution
|
446 |
+
in_color (tuple) : color for boxes around text
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
list: list of detection results images
|
450 |
+
list: list of boxes coordinates
|
451 |
+
"""
|
452 |
+
## ------- EasyOCR Text detection
|
453 |
+
with st.spinner('EasyOCR Text detection in progress ...'):
|
454 |
+
easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \
|
455 |
+
in_image_path, in_list_params[0])
|
456 |
+
# Visualization
|
457 |
+
if easyocr_boxes_coordinates:
|
458 |
+
easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \
|
459 |
+
in_color, 'None', 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
else:
|
461 |
+
easyocr_boxes_coordinates = easyocr_status
|
462 |
+
##
|
463 |
+
|
464 |
+
## ------- PPOCR Text detection
|
465 |
+
with st.spinner('PPOCR Text detection in progress ...'):
|
466 |
+
ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path)
|
467 |
+
# Visualization
|
468 |
+
if ppocr_boxes_coordinates:
|
469 |
+
ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \
|
470 |
+
in_color, 'None', 3)
|
471 |
+
else:
|
472 |
+
ppocr_image_detect = ppocr_status
|
473 |
+
##
|
474 |
+
|
475 |
+
## ------- MMOCR Text detection
|
476 |
+
with st.spinner('MMOCR Text detection in progress ...'):
|
477 |
+
mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[2], in_image_path)
|
478 |
+
# Visualization
|
479 |
+
if mmocr_boxes_coordinates:
|
480 |
+
mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \
|
481 |
+
in_color, 'None', 3)
|
482 |
else:
|
483 |
+
mmocr_image_detect = mmocr_status
|
484 |
+
##
|
485 |
+
|
486 |
+
## ------- Tesseract Text detection
|
487 |
+
with st.spinner('Tesseract Text detection in progress ...'):
|
488 |
+
tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(in_image_path, \
|
489 |
+
_in_list_images[0], \
|
490 |
+
in_list_params[3])
|
491 |
+
# Visualization
|
492 |
+
if tesserocr_status == 'OK':
|
493 |
+
tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\
|
494 |
+
in_color, 'None', 3)
|
495 |
+
else:
|
496 |
+
tesserocr_image_detect = tesserocr_status
|
497 |
+
##
|
498 |
+
#
|
499 |
+
out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \
|
500 |
+
mmocr_image_detect, tesserocr_image_detect]
|
501 |
+
out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \
|
502 |
+
mmocr_boxes_coordinates, tesserocr_boxes_coordinates]
|
503 |
+
#
|
504 |
+
|
505 |
+
return out_list_images, out_list_coordinates
|
506 |
+
|
507 |
+
###
|
508 |
+
def draw_detected(in_image, in_boxes_coordinates, in_color, posit='None', in_thickness=4):
|
509 |
+
"""Draw boxes around detected text
|
510 |
+
|
511 |
+
Args:
|
512 |
+
in_image (PIL.Image) : original image
|
513 |
+
in_boxes_coordinates (list) : boxes coordinates, from top to bottom and from left to right
|
514 |
+
[ [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ],
|
515 |
+
[ ... ]
|
516 |
+
]
|
517 |
+
in_color (tuple) : color for boxes around text
|
518 |
+
posit (str, optional) : position for text. Defaults to 'None'.
|
519 |
+
in_thickness (int, optional): thickness of the box. Defaults to 4.
|
520 |
+
|
521 |
+
Returns:
|
522 |
+
PIL.Image : original image with detected areas
|
523 |
+
"""
|
524 |
+
work_img = in_image.copy()
|
525 |
+
if in_boxes_coordinates:
|
526 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
527 |
+
for ind_box, box in enumerate(in_boxes_coordinates):
|
528 |
+
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
|
529 |
+
work_img = cv2.polylines(np.array(work_img), [box], True, in_color, in_thickness)
|
530 |
+
if posit != 'None':
|
531 |
+
if posit == 'top_left':
|
532 |
+
pos = tuple(box[0][0])
|
533 |
+
elif posit == 'top_right':
|
534 |
+
pos = tuple(box[1][0])
|
535 |
+
work_img = cv2.putText(work_img, str(ind_box+1), pos, font, 5.5, color, \
|
536 |
+
in_thickness,cv2.LINE_AA)
|
537 |
+
|
538 |
+
out_image_drawn = Image.fromarray(work_img)
|
539 |
+
else:
|
540 |
+
out_image_drawn = work_img
|
541 |
+
|
542 |
+
return out_image_drawn
|
543 |
+
|
544 |
+
###
|
545 |
+
@st.experimental_memo(show_spinner=False)
|
546 |
+
def get_cropped(in_boxes_coordinates, in_image_cv):
|
547 |
+
"""Construct list of cropped images corresponding of the input boxes coordinates list
|
548 |
+
|
549 |
+
Args:
|
550 |
+
in_boxes_coordinates (list) : list of boxes coordinates
|
551 |
+
in_image_cv (matrix) : original image
|
552 |
+
|
553 |
+
Returns:
|
554 |
+
list : list with cropped images
|
555 |
+
"""
|
556 |
+
out_list_images = []
|
557 |
+
for box in in_boxes_coordinates:
|
558 |
+
cropped = cropped_1box(box, in_image_cv)
|
559 |
+
out_list_images.append(cropped)
|
560 |
+
return out_list_images
|
561 |
+
|
562 |
+
###
|
563 |
+
def process_recog(in_list_readers, in_image_cv, in_boxes_coordinates, in_list_dict_params):
|
564 |
+
"""Recognition process for each OCR solution
|
565 |
+
|
566 |
+
Args:
|
567 |
+
in_list_readers (list) : list with previously initialized reader's instances
|
568 |
+
in_image_cv (matrix) : original image
|
569 |
+
in_boxes_coordinates (list) : list of boxes coordinates
|
570 |
+
in_list_dict_params (list) : list with dict parameters for each OCR solution
|
571 |
+
|
572 |
+
Returns:
|
573 |
+
data frame : results for each OCR solution, except Tesseract
|
574 |
+
data frame : results for Tesseract
|
575 |
+
list : status for each recognition (exception or 'OK')
|
576 |
+
"""
|
577 |
+
out_df_results = pd.DataFrame([])
|
578 |
+
|
579 |
+
list_text_easyocr = []
|
580 |
+
list_confidence_easyocr = []
|
581 |
+
list_text_ppocr = []
|
582 |
+
list_confidence_ppocr = []
|
583 |
+
list_text_mmocr = []
|
584 |
+
list_confidence_mmocr = []
|
585 |
+
|
586 |
+
# Create cropped images from detection
|
587 |
+
list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv)
|
588 |
+
|
589 |
+
# Recognize with EasyOCR
|
590 |
+
with st.spinner('EasyOCR Text recognition in progress ...'):
|
591 |
+
list_text_easyocr, list_confidence_easyocr, status_easyocr = \
|
592 |
+
easyocr_recog(list_cropped_images, in_list_readers[0], in_list_dict_params[0])
|
593 |
+
##
|
594 |
+
|
595 |
+
# Recognize with PPOCR
|
596 |
+
with st.spinner('PPOCR Text recognition in progress ...'):
|
597 |
+
list_text_ppocr, list_confidence_ppocr, status_ppocr = \
|
598 |
+
ppocr_recog(list_cropped_images, in_list_dict_params[1])
|
599 |
+
##
|
600 |
+
|
601 |
+
# Recognize with MMOCR
|
602 |
+
with st.spinner('MMOCR Text recognition in progress ...'):
|
603 |
+
list_text_mmocr, list_confidence_mmocr, status_mmocr = \
|
604 |
+
mmocr_recog(list_cropped_images, in_list_dict_params[2])
|
605 |
+
##
|
606 |
+
|
607 |
+
# Recognize with Tesseract
|
608 |
+
with st.spinner('Tesseract Text recognition in progress ...'):
|
609 |
+
out_df_results_tesseract, status_tesseract = \
|
610 |
+
tesserocr_recog(in_image_cv, in_list_dict_params[3], len(list_cropped_images))
|
611 |
+
##
|
612 |
+
|
613 |
+
# Create results data frame
|
614 |
+
out_df_results = pd.DataFrame({'cropped_image': list_cropped_images,
|
615 |
+
'text_easyocr': list_text_easyocr,
|
616 |
+
'confidence_easyocr': list_confidence_easyocr,
|
617 |
+
'text_ppocr': list_text_ppocr,
|
618 |
+
'confidence_ppocr': list_confidence_ppocr,
|
619 |
+
'text_mmocr': list_text_mmocr,
|
620 |
+
'confidence_mmocr': list_confidence_mmocr
|
621 |
+
}
|
622 |
+
)
|
623 |
+
|
624 |
+
out_list_reco_status = [status_easyocr, status_ppocr, status_mmocr, status_tesseract]
|
625 |
+
|
626 |
+
return out_df_results, out_df_results_tesseract, out_list_reco_status
|
627 |
+
|
628 |
+
###
|
629 |
+
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
630 |
+
def easyocr_recog(in_list_images, _in_reader_easyocr, in_params):
|
631 |
+
"""Recognition with EasyOCR
|
632 |
+
|
633 |
+
Args:
|
634 |
+
in_list_images (list) : list of cropped images
|
635 |
+
_in_reader_easyocr (EasyOCR reader) : the previously initialized instance
|
636 |
+
in_params (dict) : parameters for recognition
|
637 |
+
|
638 |
+
Returns:
|
639 |
+
list : list of recognized text
|
640 |
+
list : list of recognition confidence
|
641 |
+
string/Exception : recognition status
|
642 |
+
"""
|
643 |
+
progress_bar = st.progress(0)
|
644 |
+
out_list_text_easyocr = []
|
645 |
+
out_list_confidence_easyocr = []
|
646 |
+
## ------- EasyOCR Text recognition
|
647 |
+
try:
|
648 |
+
step = 0*len(in_list_images) # first recognition process
|
649 |
+
nb_steps = 4 * len(in_list_images)
|
650 |
+
for ind_img, cropped in enumerate(in_list_images):
|
651 |
+
result = _in_reader_easyocr.recognize(cropped, **in_params)
|
652 |
+
try:
|
653 |
+
out_list_text_easyocr.append(result[0][1])
|
654 |
+
out_list_confidence_easyocr.append(np.round(100*result[0][2], 1))
|
655 |
+
except:
|
656 |
+
out_list_text_easyocr.append('Not recognize')
|
657 |
+
out_list_confidence_easyocr.append(100.)
|
658 |
+
progress_bar.progress((step+ind_img+1)/nb_steps)
|
659 |
+
out_status = 'OK'
|
660 |
+
except Exception as e:
|
661 |
+
out_status = e
|
662 |
+
progress_bar.empty()
|
663 |
+
|
664 |
+
return out_list_text_easyocr, out_list_confidence_easyocr, out_status
|
665 |
+
|
666 |
+
###
|
667 |
+
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
668 |
+
def ppocr_recog(in_list_images, in_params):
|
669 |
+
"""Recognition with PPOCR
|
670 |
+
|
671 |
+
Args:
|
672 |
+
in_list_images (list) : list of cropped images
|
673 |
+
in_params (dict) : parameters for recognition
|
674 |
+
|
675 |
+
Returns:
|
676 |
+
list : list of recognized text
|
677 |
+
list : list of recognition confidence
|
678 |
+
string/Exception : recognition status
|
679 |
+
"""
|
680 |
+
## ------- PPOCR Text recognition
|
681 |
+
out_list_text_ppocr = []
|
682 |
+
out_list_confidence_ppocr = []
|
683 |
+
try:
|
684 |
+
reader_ppocr = PaddleOCR(**in_params)
|
685 |
+
step = 1*len(in_list_images) # second recognition process
|
686 |
+
nb_steps = 4 * len(in_list_images)
|
687 |
+
progress_bar = st.progress(step/nb_steps)
|
688 |
+
|
689 |
+
for ind_img, cropped in enumerate(in_list_images):
|
690 |
+
result = reader_ppocr.ocr(cropped, det=False, cls=False)
|
691 |
+
try:
|
692 |
+
out_list_text_ppocr.append(result[0][0])
|
693 |
+
out_list_confidence_ppocr.append(np.round(100*result[0][1], 1))
|
694 |
+
except:
|
695 |
+
out_list_text_ppocr.append('Not recognize')
|
696 |
+
out_list_confidence_ppocr.append(100.)
|
697 |
+
progress_bar.progress((step+ind_img+1)/nb_steps)
|
698 |
+
out_status = 'OK'
|
699 |
+
except Exception as e:
|
700 |
+
out_status = e
|
701 |
+
progress_bar.empty()
|
702 |
+
|
703 |
+
return out_list_text_ppocr, out_list_confidence_ppocr, out_status
|
704 |
+
|
705 |
+
###
|
706 |
+
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
707 |
+
def mmocr_recog(in_list_images, in_params):
|
708 |
+
"""Recognition with MMOCR
|
709 |
+
|
710 |
+
Args:
|
711 |
+
in_list_images (list) : list of cropped images
|
712 |
+
in_params (dict) : parameters for recognition
|
713 |
+
|
714 |
+
Returns:
|
715 |
+
list : list of recognized text
|
716 |
+
list : list of recognition confidence
|
717 |
+
string/Exception : recognition status
|
718 |
+
"""
|
719 |
+
## ------- MMOCR Text recognition
|
720 |
+
out_list_text_mmocr = []
|
721 |
+
out_list_confidence_mmocr = []
|
722 |
+
try:
|
723 |
+
reader_mmocr = MMOCR(det=None, **in_params)
|
724 |
+
step = 2*len(in_list_images) # third recognition process
|
725 |
+
nb_steps = 4 * len(in_list_images)
|
726 |
+
progress_bar = st.progress(step/nb_steps)
|
727 |
+
|
728 |
+
for ind_img, cropped in enumerate(in_list_images):
|
729 |
+
result = reader_mmocr.readtext(cropped, details=True)
|
730 |
+
try:
|
731 |
+
out_list_text_mmocr.append(result[0]['text'])
|
732 |
+
out_list_confidence_mmocr.append(np.round(100* \
|
733 |
+
(np.array(result[0]['score']).mean()), 1))
|
734 |
+
except:
|
735 |
+
out_list_text_mmocr.append('Not recognize')
|
736 |
+
out_list_confidence_mmocr.append(100.)
|
737 |
+
progress_bar.progress((step+ind_img+1)/nb_steps)
|
738 |
+
out_status = 'OK'
|
739 |
+
except Exception as e:
|
740 |
+
out_status = e
|
741 |
+
progress_bar.empty()
|
742 |
+
|
743 |
+
return out_list_text_mmocr, out_list_confidence_mmocr, out_status
|
744 |
+
|
745 |
+
###
|
746 |
+
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
747 |
+
def tesserocr_recog(in_img, in_params, in_nb_images):
|
748 |
+
"""Recognition with Tesseract
|
749 |
+
|
750 |
+
Args:
|
751 |
+
in_image_cv (matrix) : original image
|
752 |
+
in_params (dict) : parameters for recognition
|
753 |
+
in_nb_images : nb cropped images (used for progress bar)
|
754 |
+
|
755 |
+
Returns:
|
756 |
+
Pandas data frame : recognition results
|
757 |
+
string/Exception : recognition status
|
758 |
+
"""
|
759 |
+
## ------- Tesseract Text recognition
|
760 |
+
step = 3*in_nb_images # fourth recognition process
|
761 |
+
nb_steps = 4 * in_nb_images
|
762 |
+
progress_bar = st.progress(step/nb_steps)
|
763 |
+
|
764 |
+
try:
|
765 |
+
out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME)
|
766 |
+
|
767 |
+
out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \
|
768 |
+
[d['left'] + d['width'], d['top']], \
|
769 |
+
[d['left']+d['width'], d['top']+d['height']], \
|
770 |
+
[d['left'], d['top'] + d['height']], \
|
771 |
+
], axis=1)
|
772 |
+
out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img))
|
773 |
+
out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \
|
774 |
+
.reset_index(drop=True)
|
775 |
+
out_status = 'OK'
|
776 |
+
except Exception as e:
|
777 |
+
out_df_result = pd.DataFrame([])
|
778 |
+
out_status = e
|
779 |
+
|
780 |
+
progress_bar.progress(1.)
|
781 |
+
|
782 |
+
return out_df_result, out_status
|
783 |
+
|
784 |
+
###
|
785 |
+
def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \
|
786 |
+
in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \
|
787 |
+
in_font_scale=1, in_conf_threshold=65):
|
788 |
+
"""Draw recognized text on original image, for each OCR solution used
|
789 |
+
|
790 |
+
Args:
|
791 |
+
in_image (matrix) : original image
|
792 |
+
in_boxes_coordinates (list) : list of boxes coordinates
|
793 |
+
in_list_texts (list): list of recognized text for each recognizer (except Tesseract)
|
794 |
+
in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract)
|
795 |
+
in_df_results_tesseract (Pandas data frame): Tesseract recognition results
|
796 |
+
in_font_scale (int, optional): text font scale. Defaults to 3.
|
797 |
+
|
798 |
+
Returns:
|
799 |
+
shows the results container
|
800 |
+
"""
|
801 |
+
img = in_image.copy()
|
802 |
+
nb_readers = len(in_reader_type_list)
|
803 |
+
list_reco_images = [img.copy() for i in range(nb_readers)]
|
804 |
+
|
805 |
+
for num, box_ in enumerate(in_boxes_coordinates):
|
806 |
+
box = np.array(box_).astype(np.int64)
|
807 |
+
|
808 |
+
# For each box : draw the results of each recognizer
|
809 |
+
for ind_r in range(nb_readers-1):
|
810 |
+
confid = np.round(in_list_confid[ind_r][num], 0)
|
811 |
+
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
|
812 |
+
if confid < in_conf_threshold:
|
813 |
+
text_color = (0, 0, 0)
|
814 |
+
else:
|
815 |
+
text_color = (255, 255, 255)
|
816 |
+
|
817 |
+
list_reco_images[ind_r] = cv2.rectangle(list_reco_images[ind_r], \
|
818 |
+
(box[0][0], box[0][1]), \
|
819 |
+
(box[2][0], box[2][1]), rgb_color, -1)
|
820 |
+
list_reco_images[ind_r] = cv2.putText(list_reco_images[ind_r], \
|
821 |
+
in_list_texts[ind_r][num], \
|
822 |
+
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
|
823 |
+
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2)
|
824 |
+
|
825 |
+
# Add Tesseract process
|
826 |
+
if not in_df_results_tesseract.empty:
|
827 |
+
ind_tessocr = nb_readers-1
|
828 |
+
for num, box_ in enumerate(in_df_results_tesseract['box'].to_list()):
|
829 |
+
box = np.array(box_).astype(np.int64)
|
830 |
+
confid = np.round(in_df_results_tesseract.iloc[num]['conf'], 0)
|
831 |
+
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
|
832 |
+
if confid < in_conf_threshold:
|
833 |
+
text_color = (0, 0, 0)
|
834 |
+
else:
|
835 |
+
text_color = (255, 255, 255)
|
836 |
|
|
|
|
|
|
|
|
|
837 |
list_reco_images[ind_tessocr] = \
|
838 |
+
cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \
|
839 |
+
(box[2][0], box[2][1]), rgb_color, -1)
|
840 |
+
try:
|
841 |
+
list_reco_images[ind_tessocr] = \
|
842 |
+
cv2.putText(list_reco_images[ind_tessocr], \
|
843 |
+
in_df_results_tesseract.iloc[num]['text'], \
|
844 |
+
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
|
845 |
+
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2)
|
846 |
+
|
847 |
+
except:
|
848 |
+
|
849 |
+
pass
|
850 |
+
|
851 |
+
with show_reco.container():
|
852 |
+
# Draw the results, 2 images per line
|
853 |
+
reco_lines = math.ceil(len(in_reader_type_list) / 2)
|
854 |
+
column_width = 500
|
855 |
+
for ind_lig in range(0, reco_lines+1, 2):
|
856 |
+
cols = st.columns(2)
|
857 |
+
for ind_col in range(2):
|
858 |
+
ind = ind_lig + ind_col
|
859 |
+
if ind <= len(in_reader_type_list):
|
860 |
+
if in_reader_type_list[ind] == 'Tesseract':
|
861 |
+
column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \
|
862 |
+
">Recognition with ' + in_reader_type_list[ind] + \
|
863 |
+
'<sp style="font-size: 17px"> (with its own detector) \
|
864 |
+
</sp></p>'
|
865 |
+
else:
|
866 |
+
column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \
|
867 |
+
">Recognition with ' + \
|
868 |
+
in_reader_type_list[ind]+ '</p>'
|
869 |
+
cols[ind_col].markdown(column_title, unsafe_allow_html=True)
|
870 |
+
if st.session_state.list_reco_status[ind] == 'OK':
|
871 |
+
cols[ind_col].image(list_reco_images[ind], \
|
872 |
+
width=column_width, use_column_width=True)
|
873 |
+
else:
|
874 |
+
cols[ind_col].write(list_reco_status[ind], \
|
875 |
+
use_column_width=True)
|
876 |
+
|
877 |
+
st.markdown(' π‘ Bad font size? you can adjust it below and refresh:')
|
878 |
+
|
879 |
+
###
|
880 |
+
def highlight():
|
881 |
+
""" Highlight choosen detector results
|
882 |
+
"""
|
883 |
+
with show_detect.container():
|
884 |
+
columns_size = [1 for x in reader_type_list]
|
885 |
+
column_width = [400 for x in reader_type_list]
|
886 |
+
columns_color = ["rgb(0,0,0)" for x in reader_type_list]
|
887 |
+
columns_size[reader_type_dict[st.session_state.detect_reader]] = 2
|
888 |
+
column_width[reader_type_dict[st.session_state.detect_reader]] = 500
|
889 |
+
columns_color[reader_type_dict[st.session_state.detect_reader]] = "rgb(228,26,28)"
|
890 |
+
columns = st.columns(columns_size, ) #gap='medium')
|
891 |
+
|
892 |
+
for ind_col, col in enumerate(columns):
|
893 |
+
column_title = '<p style="font-size: 20px;color:'+columns_color[ind_col] + \
|
894 |
+
';">Detection with ' + reader_type_list[ind_col]+ '</p>'
|
895 |
+
col.markdown(column_title, unsafe_allow_html=True)
|
896 |
+
if isinstance(list_images[ind_col+2], PIL.Image.Image):
|
897 |
+
col.image(list_images[ind_col+2], width=column_width[ind_col], \
|
898 |
+
use_column_width=True)
|
899 |
+
else:
|
900 |
+
col.write(list_images[ind_col+2], use_column_width=True)
|
901 |
+
st.session_state.columns_size = columns_size
|
902 |
+
st.session_state.column_width = column_width
|
903 |
+
st.session_state.columns_color = columns_color
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
904 |
|
905 |
+
###
|
906 |
+
@st.cache(show_spinner=False)
|
907 |
+
def get_demo():
|
908 |
+
"""Get the demo files
|
909 |
|
910 |
+
Returns:
|
911 |
+
PIL.Image : input file opened with Pillow
|
912 |
+
PIL.Image : input file opened with Pillow
|
913 |
+
"""
|
914 |
|
915 |
+
out_img_demo_1 = Image.open("img_demo_1.jpg")
|
916 |
+
out_img_demo_2 = Image.open("img_demo_2.jpg")
|
917 |
+
|
918 |
+
return out_img_demo_1, out_img_demo_2
|
919 |
+
|
920 |
+
###
|
921 |
+
def raz():
|
922 |
+
st.session_state.list_coordinates = []
|
923 |
|
|
|
924 |
|
|
|
|
|
|
|
925 |
|
|
|
|
|
|
|
|
|
926 |
##----------- Initializations ---------------------------------------------------------------------
|
927 |
#print("PID : ", os.getpid())
|
928 |
|
|
|
980 |
with st.form("form1"):
|
981 |
col1, col2 = st.columns(2, ) #gap="medium")
|
982 |
col1.markdown("##### Original image")
|
983 |
+
col1.image(list_images[0], width=400)
|
984 |
col2.markdown("##### Hyperparameters values for detection")
|
985 |
|
986 |
with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \
|