|
"""This Streamlit app allows you to compare, from a given image, the results of different solutions: |
|
EasyOcr, PaddleOCR, MMOCR, Tesseract |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import streamlit as st |
|
import plotly.express as px |
|
import numpy as np |
|
import math |
|
import pandas as pd |
|
from time import sleep |
|
|
|
import cv2 |
|
from PIL import Image, ImageColor |
|
import PIL |
|
import easyocr |
|
from paddleocr import PaddleOCR |
|
|
|
import pytesseract |
|
from pytesseract import Output |
|
import os |
|
from mycolorpy import colorlist as mcp |
|
|
|
|
|
|
|
|
|
|
|
def app(): |
|
|
|
|
|
|
|
|
|
|
|
@st.cache |
|
def convert_df(in_df): |
|
"""Convert data frame function, used by download button |
|
|
|
Args: |
|
in_df (data frame): data frame to convert |
|
|
|
Returns: |
|
data frame: converted data frame |
|
""" |
|
|
|
return in_df.to_csv().encode('utf-8') |
|
|
|
|
|
def easyocr_coord_convert(in_list_coord): |
|
"""Convert easyocr coordinates to standard format used by others functions |
|
|
|
Args: |
|
in_list_coord (list of numbers): format [x_min, x_max, y_min, y_max] |
|
|
|
Returns: |
|
list of lists: format [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ] |
|
""" |
|
|
|
coord = in_list_coord |
|
return [[coord[0], coord[2]], [coord[1], coord[2]], [coord[1], coord[3]], [coord[0], coord[3]]] |
|
|
|
|
|
@st.cache(show_spinner=False) |
|
def initializations(): |
|
"""Initializations for the app |
|
|
|
Returns: |
|
list of strings : list of OCR solutions names |
|
(['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']) |
|
dict : names and indices of the OCR solutions |
|
({'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}) |
|
list of dicts : list of languages supported by each OCR solution |
|
list of int : columns for recognition details results |
|
dict : confidence color scale |
|
plotly figure : confidence color scale figure |
|
""" |
|
|
|
|
|
|
|
out_reader_type_list = ['EasyOCR', 'PPOCR', 'Tesseract'] |
|
out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'Tesseract': 2} |
|
|
|
|
|
out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) |
|
|
|
|
|
out_dict_lang_easyocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Angika': 'ang', \ |
|
'Arabic': 'ar', 'Assamese': 'as', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \ |
|
'Bulgarian': 'bg', 'Bihari': 'bh', 'Bhojpuri': 'bho', 'Bengali': 'bn', 'Bosnian': 'bs', \ |
|
'Simplified Chinese': 'ch_sim', 'Traditional Chinese': 'ch_tra', 'Chechen': 'che', \ |
|
'Czech': 'cs', 'Welsh': 'cy', 'Danish': 'da', 'Dargwa': 'dar', 'German': 'de', \ |
|
'English': 'en', 'Spanish': 'es', 'Estonian': 'et', 'Persian (Farsi)': 'fa', 'French': 'fr', \ |
|
'Irish': 'ga', 'Goan Konkani': 'gom', 'Hindi': 'hi', 'Croatian': 'hr', 'Hungarian': 'hu', \ |
|
'Indonesian': 'id', 'Ingush': 'inh', 'Icelandic': 'is', 'Italian': 'it', 'Japanese': 'ja', \ |
|
'Kabardian': 'kbd', 'Kannada': 'kn', 'Korean': 'ko', 'Kurdish': 'ku', 'Latin': 'la', \ |
|
'Lak': 'lbe', 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Latvian': 'lv', 'Magahi': 'mah', \ |
|
'Maithili': 'mai', 'Maori': 'mi', 'Mongolian': 'mn', 'Marathi': 'mr', 'Malay': 'ms', \ |
|
'Maltese': 'mt', 'Nepali': 'ne', 'Newari': 'new', 'Dutch': 'nl', 'Norwegian': 'no', \ |
|
'Occitan': 'oc', 'Pali': 'pi', 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', \ |
|
'Russian': 'ru', 'Serbian (cyrillic)': 'rs_cyrillic', 'Serbian (latin)': 'rs_latin', \ |
|
'Nagpuri': 'sck', 'Slovak': 'sk', 'Slovenian': 'sl', 'Albanian': 'sq', 'Swedish': 'sv', \ |
|
'Swahili': 'sw', 'Tamil': 'ta', 'Tabassaran': 'tab', 'Telugu': 'te', 'Thai': 'th', \ |
|
'Tajik': 'tjk', 'Tagalog': 'tl', 'Turkish': 'tr', 'Uyghur': 'ug', 'Ukranian': 'uk', \ |
|
'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi'} |
|
|
|
out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \ |
|
'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \ |
|
'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \ |
|
'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \ |
|
'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \ |
|
'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \ |
|
'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \ |
|
'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \ |
|
'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \ |
|
'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \ |
|
'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \ |
|
'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \ |
|
'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \ |
|
'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \ |
|
'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \ |
|
'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'} |
|
|
|
|
|
|
|
out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \ |
|
'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \ |
|
'Azerbaijani': 'aze', 'Basque': 'eus','Belarusian': 'bel','Bengali': 'ben','Bosnian': 'bos', \ |
|
'Breton': 'bre', 'Bulgarian': 'bul','Burmese': 'mya','Catalan; Valencian': 'cat', \ |
|
'Cebuano': 'ceb', 'Central Khmer': 'khm','Cherokee': 'chr','Chinese - Simplified': 'chi_sim', \ |
|
'Chinese - Traditional': 'chi_tra','Corsican': 'cos','Croatian': 'hrv','Czech': 'ces', \ |
|
'Danish':'dan','Dutch; Flemish':'nld','Dzongkha':'dzo','English, Middle (1100-1500)':'enm', \ |
|
'English': 'eng','Esperanto': 'epo','Estonian': 'est','Faroese': 'fao', \ |
|
'Filipino (old - Tagalog)': 'fil','Finnish': 'fin','French, Middle (ca.1400-1600)': 'frm', \ |
|
'French': 'fra','Galician': 'glg','Georgian - Old': 'kat_old','Georgian': 'kat', \ |
|
'German - Fraktur': 'frk','German': 'deu','Greek, Modern (1453-)': 'ell','Gujarati': 'guj', \ |
|
'Haitian; Haitian Creole': 'hat','Hebrew': 'heb','Hindi': 'hin','Hungarian': 'hun', \ |
|
'Icelandic': 'isl','Indonesian': 'ind','Inuktitut': 'iku','Irish': 'gle', \ |
|
'Italian - Old': 'ita_old','Italian': 'ita','Japanese': 'jpn','Javanese': 'jav', \ |
|
'Kannada': 'kan','Kazakh': 'kaz','Kirghiz; Kyrgyz': 'kir','Korean (vertical)': 'kor_vert', \ |
|
'Korean': 'kor','Kurdish (Arabic Script)': 'kur_ara','Lao': 'lao','Latin': 'lat', \ |
|
'Latvian':'lav','Lithuanian':'lit','Luxembourgish':'ltz','Macedonian':'mkd','Malay':'msa', \ |
|
'Malayalam': 'mal','Maltese': 'mlt','Maori': 'mri','Marathi': 'mar','Mongolian': 'mon', \ |
|
'Nepali': 'nep','Norwegian': 'nor','Occitan (post 1500)': 'oci', \ |
|
'Orientation and script detection module':'osd','Oriya':'ori','Panjabi; Punjabi':'pan', \ |
|
'Persian':'fas','Polish':'pol','Portuguese':'por','Pushto; Pashto':'pus','Quechua':'que', \ |
|
'Romanian; Moldavian; Moldovan': 'ron','Russian': 'rus','Sanskrit': 'san', \ |
|
'Scottish Gaelic': 'gla','Serbian - Latin': 'srp_latn','Serbian': 'srp','Sindhi': 'snd', \ |
|
'Sinhala; Sinhalese': 'sin','Slovak': 'slk','Slovenian': 'slv', \ |
|
'Spanish; Castilian - Old': 'spa_old','Spanish; Castilian': 'spa','Sundanese': 'sun', \ |
|
'Swahili': 'swa','Swedish': 'swe','Syriac': 'syr','Tajik': 'tgk','Tamil': 'tam', \ |
|
'Tatar':'tat','Telugu':'tel','Thai':'tha','Tibetan':'bod','Tigrinya':'tir','Tonga':'ton', \ |
|
'Turkish': 'tur','Uighur; Uyghur': 'uig','Ukrainian': 'ukr','Urdu': 'urd', \ |
|
'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \ |
|
'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'} |
|
|
|
out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, \ |
|
|
|
out_dict_lang_tesseract] |
|
|
|
|
|
if 'columns_size' not in st.session_state: |
|
st.session_state.columns_size = [2] + [1 for x in out_reader_type_list[1:]] |
|
if 'column_width' not in st.session_state: |
|
st.session_state.column_width = [400] + [300 for x in out_reader_type_list[1:]] |
|
if 'columns_color' not in st.session_state: |
|
st.session_state.columns_color = ["rgb(228,26,28)"] + \ |
|
["rgb(79, 43, 255)" for x in out_reader_type_list[1:]] |
|
if 'list_coordinates' not in st.session_state: |
|
st.session_state.list_coordinates = [] |
|
|
|
|
|
out_list_confid = list(np.arange(0,101,1)) |
|
out_list_grad = mcp.gen_color_normalized(cmap="Greens",data_arr=np.array(out_list_confid)) |
|
out_dict_back_colors = {out_list_confid[i]: out_list_grad[i] \ |
|
for i in range(len(out_list_confid))} |
|
|
|
list_y = [1 for i in out_list_confid] |
|
df_confid = pd.DataFrame({'% confidence scale': out_list_confid, 'y': list_y}) |
|
|
|
out_fig = px.scatter(df_confid, x='% confidence scale', y='y', \ |
|
hover_data={'% confidence scale': True, 'y': False}, |
|
color=out_dict_back_colors.values(), range_y=[0.9,1.1], range_x=[0,100], |
|
color_discrete_map="identity",height=50,symbol='y',symbol_sequence=['square']) |
|
out_fig.update_xaxes(showticklabels=False) |
|
out_fig.update_yaxes(showticklabels=False, range=[0.1, 1.1], visible=False) |
|
out_fig.update_traces(marker_size=50) |
|
out_fig.update_layout(paper_bgcolor="white", margin=dict(b=0,r=0,t=0,l=0), xaxis_side="top", \ |
|
showlegend=False) |
|
|
|
return out_reader_type_list, out_reader_type_dict, out_list_dict_lang, \ |
|
out_cols_size, out_dict_back_colors, out_fig |
|
|
|
|
|
@st.experimental_memo(show_spinner=False) |
|
def init_easyocr(in_params): |
|
"""Initialization of easyOCR reader |
|
|
|
Args: |
|
in_params (list): list with the language |
|
|
|
Returns: |
|
easyocr reader: the easyocr reader instance |
|
""" |
|
out_ocr = easyocr.Reader(in_params) |
|
return out_ocr |
|
|
|
|
|
@st.cache(show_spinner=False) |
|
def init_ppocr(in_params): |
|
"""Initialization of PPOCR reader |
|
|
|
Args: |
|
in_params (dict): dict with parameters |
|
|
|
Returns: |
|
ppocr reader: the ppocr reader instance |
|
""" |
|
out_ocr = PaddleOCR(lang=in_params[0], **in_params[1]) |
|
return out_ocr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_readers(in_list_params): |
|
"""Initialization of the readers, and return them as list |
|
|
|
Args: |
|
in_list_params (list): list of dicts of parameters for each reader |
|
|
|
Returns: |
|
list: list of the reader's instances |
|
""" |
|
|
|
|
|
with st.spinner("EasyOCR reader initialization in progress ..."): |
|
reader_easyocr = init_easyocr([in_list_params[0][0]]) |
|
|
|
|
|
|
|
with st.spinner("PPOCR reader initialization in progress ..."): |
|
reader_ppocr = init_ppocr(in_list_params[1]) |
|
|
|
|
|
|
|
|
|
|
|
out_list_readers = [reader_easyocr, reader_ppocr] |
|
|
|
return out_list_readers |
|
|
|
|
|
def load_image(in_image_file): |
|
"""Load input file and open it |
|
|
|
Args: |
|
in_image_file (string or Streamlit UploadedFile): image to consider |
|
|
|
Returns: |
|
string : locally saved image path (img.) |
|
PIL.Image : input file opened with Pillow |
|
matrix : input file opened with Opencv |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(in_image_file, str): |
|
out_image_path = "tmp_"+in_image_file |
|
else: |
|
out_image_path = "tmp_"+in_image_file.name |
|
|
|
img = Image.open(in_image_file) |
|
img_saved = img.save(out_image_path) |
|
|
|
|
|
out_image_orig = Image.open(out_image_path) |
|
out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB) |
|
|
|
return out_image_path, out_image_orig, out_image_cv2 |
|
|
|
|
|
@st.experimental_memo(show_spinner=False) |
|
def easyocr_detect(_in_reader, in_image_path, in_params): |
|
"""Detection with EasyOCR |
|
|
|
Args: |
|
_in_reader (EasyOCR reader) : the previously initialized instance |
|
in_image_path (string ) : locally saved image path |
|
in_params (list) : list with the parameters for detection |
|
|
|
Returns: |
|
list : list of the boxes coordinates |
|
exception on error, string 'OK' otherwise |
|
""" |
|
try: |
|
dict_param = in_params[1] |
|
detection_result = _in_reader.detect(in_image_path, |
|
|
|
|
|
**dict_param |
|
) |
|
easyocr_coordinates = detection_result[0][0] |
|
|
|
|
|
|
|
out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates)) |
|
out_status = 'OK' |
|
except Exception as e: |
|
out_easyocr_boxes_coordinates = [] |
|
out_status = e |
|
|
|
return out_easyocr_boxes_coordinates, out_status |
|
|
|
|
|
@st.experimental_memo(show_spinner=False) |
|
def ppocr_detect(_in_reader, in_image_path): |
|
"""Detection with PPOCR |
|
|
|
Args: |
|
_in_reader (PPOCR reader) : the previously initialized instance |
|
in_image_path (string ) : locally saved image path |
|
|
|
Returns: |
|
list : list of the boxes coordinates |
|
exception on error, string 'OK' otherwise |
|
""" |
|
|
|
try: |
|
out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False) |
|
out_status = 'OK' |
|
except Exception as e: |
|
out_ppocr_boxes_coordinates = [] |
|
out_status = e |
|
|
|
return out_ppocr_boxes_coordinates, out_status |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cropped_1box(in_box, in_img): |
|
"""Construction of an cropped image corresponding to an area of the initial image |
|
|
|
Args: |
|
in_box (list) : box with coordinates |
|
in_img (matrix) : image |
|
|
|
Returns: |
|
matrix : cropped image |
|
""" |
|
box_ar = np.array(in_box).astype(np.int64) |
|
x_min = box_ar[:, 0].min() |
|
x_max = box_ar[:, 0].max() |
|
y_min = box_ar[:, 1].min() |
|
y_max = box_ar[:, 1].max() |
|
out_cropped = in_img[y_min:y_max, x_min:x_max] |
|
|
|
return out_cropped |
|
|
|
|
|
@st.experimental_memo(show_spinner=False) |
|
def tesserocr_detect(in_image_path, _in_img, in_params): |
|
"""Detection with Tesseract |
|
|
|
Args: |
|
in_image_path (string) : locally saved image path |
|
_in_img (PIL.Image) : image to consider |
|
in_params (list) : list with the parameters for detection |
|
|
|
Returns: |
|
list : list of the boxes coordinates |
|
exception on error, string 'OK' otherwise |
|
""" |
|
try: |
|
dict_param = in_params[1] |
|
df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME) |
|
|
|
df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \ |
|
[d['left'] + d['width'], d['top']], \ |
|
[d['left'] + d['width'], d['top'] + d['height']], \ |
|
[d['left'], d['top'] + d['height']], \ |
|
], axis=1) |
|
out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list() |
|
out_status = 'OK' |
|
except Exception as e: |
|
out_tesserocr_boxes_coordinates = [] |
|
out_status = e |
|
|
|
return out_tesserocr_boxes_coordinates, out_status |
|
|
|
|
|
@st.experimental_memo(show_spinner=False) |
|
def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color): |
|
"""Detection process for each OCR solution |
|
|
|
Args: |
|
in_image_path (string) : locally saved image path |
|
_in_list_images (list) : list of original image |
|
_in_list_readers (list) : list with previously initialized reader's instances |
|
in_list_params (list) : list with dict parameters for each OCR solution |
|
in_color (tuple) : color for boxes around text |
|
|
|
Returns: |
|
list: list of detection results images |
|
list: list of boxes coordinates |
|
""" |
|
|
|
with st.spinner('EasyOCR Text detection in progress ...'): |
|
easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \ |
|
in_image_path, in_list_params[0]) |
|
|
|
if easyocr_boxes_coordinates: |
|
easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \ |
|
in_color, 'None', 3) |
|
else: |
|
easyocr_boxes_coordinates = easyocr_status |
|
|
|
|
|
|
|
with st.spinner('PPOCR Text detection in progress ...'): |
|
list_ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path) |
|
ppocr_boxes_coordinates = list_ppocr_boxes_coordinates[0] |
|
|
|
if ppocr_boxes_coordinates: |
|
ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \ |
|
in_color, 'None', 3) |
|
else: |
|
ppocr_image_detect = ppocr_status |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with st.spinner('Tesseract Text detection in progress ...'): |
|
tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(in_image_path, \ |
|
_in_list_images[0], \ |
|
in_list_params[2]) |
|
|
|
if tesserocr_status == 'OK': |
|
tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\ |
|
in_color, 'None', 3) |
|
else: |
|
tesserocr_image_detect = tesserocr_status |
|
|
|
|
|
out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \ |
|
|
|
tesserocr_image_detect] |
|
out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \ |
|
|
|
tesserocr_boxes_coordinates] |
|
|
|
|
|
return out_list_images, out_list_coordinates |
|
|
|
|
|
def draw_detected(in_image, in_boxes_coordinates, in_color, posit='None', in_thickness=4): |
|
"""Draw boxes around detected text |
|
|
|
Args: |
|
in_image (PIL.Image) : original image |
|
in_boxes_coordinates (list) : boxes coordinates, from top to bottom and from left to right |
|
[ [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ], |
|
[ ... ] |
|
] |
|
in_color (tuple) : color for boxes around text |
|
posit (str, optional) : position for text. Defaults to 'None'. |
|
in_thickness (int, optional): thickness of the box. Defaults to 4. |
|
|
|
Returns: |
|
PIL.Image : original image with detected areas |
|
""" |
|
work_img = in_image.copy() |
|
if in_boxes_coordinates: |
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
for ind_box, box in enumerate(in_boxes_coordinates): |
|
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) |
|
work_img = cv2.polylines(np.array(work_img), [box], True, in_color, in_thickness) |
|
if posit != 'None': |
|
if posit == 'top_left': |
|
pos = tuple(box[0][0]) |
|
elif posit == 'top_right': |
|
pos = tuple(box[1][0]) |
|
work_img = cv2.putText(work_img, str(ind_box+1), pos, font, 5.5, color, \ |
|
in_thickness,cv2.LINE_AA) |
|
|
|
out_image_drawn = Image.fromarray(work_img) |
|
else: |
|
out_image_drawn = work_img |
|
|
|
return out_image_drawn |
|
|
|
|
|
@st.experimental_memo(show_spinner=False) |
|
def get_cropped(in_boxes_coordinates, in_image_cv): |
|
"""Construct list of cropped images corresponding of the input boxes coordinates list |
|
|
|
Args: |
|
in_boxes_coordinates (list) : list of boxes coordinates |
|
in_image_cv (matrix) : original image |
|
|
|
Returns: |
|
list : list with cropped images |
|
""" |
|
out_list_images = [] |
|
for box in in_boxes_coordinates: |
|
cropped = cropped_1box(box, in_image_cv) |
|
out_list_images.append(cropped) |
|
return out_list_images |
|
|
|
|
|
def process_recog(in_list_readers, in_image_cv, in_boxes_coordinates, in_list_dict_params): |
|
"""Recognition process for each OCR solution |
|
|
|
Args: |
|
in_list_readers (list) : list with previously initialized reader's instances |
|
in_image_cv (matrix) : original image |
|
in_boxes_coordinates (list) : list of boxes coordinates |
|
in_list_dict_params (list) : list with dict parameters for each OCR solution |
|
|
|
Returns: |
|
data frame : results for each OCR solution, except Tesseract |
|
data frame : results for Tesseract |
|
list : status for each recognition (exception or 'OK') |
|
""" |
|
out_df_results = pd.DataFrame([]) |
|
|
|
list_text_easyocr = [] |
|
list_confidence_easyocr = [] |
|
list_text_ppocr = [] |
|
list_confidence_ppocr = [] |
|
|
|
|
|
|
|
|
|
list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv) |
|
|
|
|
|
with st.spinner('EasyOCR Text recognition in progress ...'): |
|
list_text_easyocr, list_confidence_easyocr, status_easyocr = \ |
|
easyocr_recog(list_cropped_images, in_list_readers[0], in_list_dict_params[0]) |
|
|
|
|
|
|
|
with st.spinner('PPOCR Text recognition in progress ...'): |
|
list_text_ppocr, list_confidence_ppocr, status_ppocr = \ |
|
ppocr_recog(list_cropped_images, in_list_dict_params[1]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with st.spinner('Tesseract Text recognition in progress ...'): |
|
out_df_results_tesseract, status_tesseract = \ |
|
tesserocr_recog(in_image_cv, in_list_dict_params[2], len(list_cropped_images)) |
|
|
|
|
|
|
|
|
|
out_df_results = pd.DataFrame({'cropped_image': list_cropped_images, |
|
'text_easyocr': list_text_easyocr, |
|
'confidence_easyocr': list_confidence_easyocr, |
|
'text_ppocr': list_text_ppocr, |
|
'confidence_ppocr': list_confidence_ppocr, |
|
|
|
|
|
} |
|
) |
|
|
|
|
|
out_list_reco_status = [status_easyocr, status_ppocr, status_tesseract] |
|
|
|
return out_df_results, out_df_results_tesseract, out_list_reco_status |
|
|
|
|
|
@st.experimental_memo(suppress_st_warning=True, show_spinner=False) |
|
def easyocr_recog(in_list_images, _in_reader_easyocr, in_params): |
|
"""Recognition with EasyOCR |
|
|
|
Args: |
|
in_list_images (list) : list of cropped images |
|
_in_reader_easyocr (EasyOCR reader) : the previously initialized instance |
|
in_params (dict) : parameters for recognition |
|
|
|
Returns: |
|
list : list of recognized text |
|
list : list of recognition confidence |
|
string/Exception : recognition status |
|
""" |
|
progress_bar = st.progress(0) |
|
out_list_text_easyocr = [] |
|
out_list_confidence_easyocr = [] |
|
|
|
try: |
|
step = 0*len(in_list_images) |
|
|
|
nb_steps = 3 * len(in_list_images) |
|
for ind_img, cropped in enumerate(in_list_images): |
|
result = _in_reader_easyocr.recognize(cropped, **in_params) |
|
try: |
|
out_list_text_easyocr.append(result[0][1]) |
|
out_list_confidence_easyocr.append(np.round(100*result[0][2], 1)) |
|
except: |
|
out_list_text_easyocr.append('Not recognize') |
|
out_list_confidence_easyocr.append(100.) |
|
progress_bar.progress((step+ind_img+1)/nb_steps) |
|
out_status = 'OK' |
|
except Exception as e: |
|
out_status = e |
|
progress_bar.empty() |
|
|
|
return out_list_text_easyocr, out_list_confidence_easyocr, out_status |
|
|
|
|
|
@st.experimental_memo(suppress_st_warning=True, show_spinner=False) |
|
def ppocr_recog(in_list_images, in_params): |
|
"""Recognition with PPOCR |
|
|
|
Args: |
|
in_list_images (list) : list of cropped images |
|
in_params (dict) : parameters for recognition |
|
|
|
Returns: |
|
list : list of recognized text |
|
list : list of recognition confidence |
|
string/Exception : recognition status |
|
""" |
|
|
|
out_list_text_ppocr = [] |
|
out_list_confidence_ppocr = [] |
|
try: |
|
reader_ppocr = PaddleOCR(**in_params) |
|
step = 1*len(in_list_images) |
|
|
|
nb_steps = 3 * len(in_list_images) |
|
progress_bar = st.progress(step/nb_steps) |
|
|
|
for ind_img, cropped in enumerate(in_list_images): |
|
list_result = reader_ppocr.ocr(cropped, det=False, cls=False) |
|
result = list_result[0] |
|
try: |
|
out_list_text_ppocr.append(result[0][0]) |
|
out_list_confidence_ppocr.append(np.round(100*result[0][1], 1)) |
|
except: |
|
out_list_text_ppocr.append('Not recognize') |
|
out_list_confidence_ppocr.append(100.) |
|
progress_bar.progress((step+ind_img+1)/nb_steps) |
|
out_status = 'OK' |
|
except Exception as e: |
|
out_status = e |
|
progress_bar.empty() |
|
|
|
return out_list_text_ppocr, out_list_confidence_ppocr, out_status |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@st.experimental_memo(suppress_st_warning=True, show_spinner=False) |
|
def tesserocr_recog(in_img, in_params, in_nb_images): |
|
"""Recognition with Tesseract |
|
|
|
Args: |
|
in_image_cv (matrix) : original image |
|
in_params (dict) : parameters for recognition |
|
in_nb_images : nb cropped images (used for progress bar) |
|
|
|
Returns: |
|
Pandas data frame : recognition results |
|
string/Exception : recognition status |
|
""" |
|
|
|
step = 3*in_nb_images |
|
|
|
nb_steps = 3 * in_nb_images |
|
progress_bar = st.progress(step/nb_steps) |
|
|
|
try: |
|
out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME) |
|
|
|
out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \ |
|
[d['left'] + d['width'], d['top']], \ |
|
[d['left']+d['width'], d['top']+d['height']], \ |
|
[d['left'], d['top'] + d['height']], \ |
|
], axis=1) |
|
out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img)) |
|
out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \ |
|
.reset_index(drop=True) |
|
out_status = 'OK' |
|
except Exception as e: |
|
out_df_result = pd.DataFrame([]) |
|
out_status = e |
|
|
|
progress_bar.progress(1.) |
|
|
|
return out_df_result, out_status |
|
|
|
|
|
def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \ |
|
in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \ |
|
in_font_scale=1, in_conf_threshold=65): |
|
"""Draw recognized text on original image, for each OCR solution used |
|
|
|
Args: |
|
in_image (matrix) : original image |
|
in_boxes_coordinates (list) : list of boxes coordinates |
|
in_list_texts (list): list of recognized text for each recognizer (except Tesseract) |
|
in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract) |
|
in_df_results_tesseract (Pandas data frame): Tesseract recognition results |
|
in_font_scale (int, optional): text font scale. Defaults to 3. |
|
|
|
Returns: |
|
shows the results container |
|
""" |
|
img = in_image.copy() |
|
nb_readers = len(in_reader_type_list) |
|
list_reco_images = [img.copy() for i in range(nb_readers)] |
|
|
|
for num, box_ in enumerate(in_boxes_coordinates): |
|
box = np.array(box_).astype(np.int64) |
|
|
|
|
|
for ind_r in range(nb_readers-1): |
|
confid = np.round(in_list_confid[ind_r][num], 0) |
|
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB") |
|
if confid < in_conf_threshold: |
|
text_color = (0, 0, 0) |
|
else: |
|
text_color = (255, 255, 255) |
|
|
|
list_reco_images[ind_r] = cv2.rectangle(list_reco_images[ind_r], \ |
|
(box[0][0], box[0][1]), \ |
|
(box[2][0], box[2][1]), rgb_color, -1) |
|
list_reco_images[ind_r] = cv2.putText(list_reco_images[ind_r], \ |
|
in_list_texts[ind_r][num], \ |
|
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \ |
|
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2) |
|
|
|
|
|
if not in_df_results_tesseract.empty: |
|
ind_tessocr = nb_readers-1 |
|
for num, box_ in enumerate(in_df_results_tesseract['box'].to_list()): |
|
box = np.array(box_).astype(np.int64) |
|
confid = np.round(in_df_results_tesseract.iloc[num]['conf'], 0) |
|
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB") |
|
if confid < in_conf_threshold: |
|
text_color = (0, 0, 0) |
|
else: |
|
text_color = (255, 255, 255) |
|
|
|
list_reco_images[ind_tessocr] = \ |
|
cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \ |
|
(box[2][0], box[2][1]), rgb_color, -1) |
|
try: |
|
list_reco_images[ind_tessocr] = \ |
|
cv2.putText(list_reco_images[ind_tessocr], \ |
|
in_df_results_tesseract.iloc[num]['text'], \ |
|
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \ |
|
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2) |
|
|
|
except: |
|
|
|
pass |
|
|
|
with show_reco.container(): |
|
|
|
reco_lines = math.ceil(len(in_reader_type_list) / 2) |
|
column_width = 400 |
|
for ind_lig in range(0, reco_lines+1, 2): |
|
cols = st.columns(2) |
|
for ind_col in range(2): |
|
ind = ind_lig + ind_col |
|
if ind < len(in_reader_type_list): |
|
if in_reader_type_list[ind] == 'Tesseract': |
|
column_title = '<p style="font-size: 20px;color:rgb(228,26,28); \ |
|
">Recognition with ' + in_reader_type_list[ind] + \ |
|
'<sp style="font-size: 17px"> (with its own detector) \ |
|
</sp></p>' |
|
else: |
|
column_title = '<p style="font-size: 20px;color:rgb(228,26,28); \ |
|
">Recognition with ' + \ |
|
in_reader_type_list[ind]+ '</p>' |
|
cols[ind_col].markdown(column_title, unsafe_allow_html=True) |
|
if st.session_state.list_reco_status[ind] == 'OK': |
|
cols[ind_col].image(list_reco_images[ind], \ |
|
width=column_width, use_column_width=True) |
|
else: |
|
cols[ind_col].write(list_reco_status[ind], \ |
|
use_column_width=True) |
|
|
|
st.markdown(' π‘ Bad font size? you can adjust it below and refresh:') |
|
|
|
|
|
def highlight(): |
|
""" Highlight choosen detector results |
|
""" |
|
with show_detect.container(): |
|
columns_size = [1 for x in reader_type_list] |
|
column_width = [300 for x in reader_type_list] |
|
columns_color = ["rgb(12, 5, 105)" for x in reader_type_list] |
|
columns_size[reader_type_dict[st.session_state.detect_reader]] = 2 |
|
column_width[reader_type_dict[st.session_state.detect_reader]] = 400 |
|
columns_color[reader_type_dict[st.session_state.detect_reader]] = "rgb(228,26,28)" |
|
columns = st.columns(columns_size, ) |
|
|
|
for ind_col, col in enumerate(columns): |
|
column_title = '<p style="font-size: 20px;color:'+columns_color[ind_col] + \ |
|
';">Detection with ' + reader_type_list[ind_col]+ '</p>' |
|
col.markdown(column_title, unsafe_allow_html=True) |
|
if isinstance(list_images[ind_col+2], PIL.Image.Image): |
|
col.image(list_images[ind_col+2], width=column_width[ind_col], \ |
|
use_column_width=True) |
|
else: |
|
col.write(list_images[ind_col+2], use_column_width=True) |
|
st.session_state.columns_size = columns_size |
|
st.session_state.column_width = column_width |
|
st.session_state.columns_color = columns_color |
|
|
|
|
|
@st.cache(show_spinner=False) |
|
def get_demo(): |
|
"""Get the demo files |
|
|
|
Returns: |
|
PIL.Image : input file opened with Pillow |
|
PIL.Image : input file opened with Pillow |
|
""" |
|
|
|
out_img_demo_1 = Image.open("img_demo_1.jpg") |
|
out_img_demo_2 = Image.open("img_demo_2.jpg") |
|
|
|
return out_img_demo_1, out_img_demo_2 |
|
|
|
|
|
def raz(): |
|
st.session_state.list_coordinates = [] |
|
st.session_state.list_images = [] |
|
st.session_state.detect_reader = reader_type_list[0] |
|
|
|
st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]] |
|
st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]] |
|
st.session_state.columns_color = ["rgb(228,26,28)"] + \ |
|
["rgb(79, 43, 255)" for x in reader_type_list[1:]] |
|
|
|
|
|
easyocr_detect.clear() |
|
ppocr_detect.clear() |
|
|
|
tesserocr_detect.clear() |
|
process_detect.clear() |
|
get_cropped.clear() |
|
easyocr_recog.clear() |
|
ppocr_recog.clear() |
|
|
|
tesserocr_recog.clear() |
|
|
|
|
|
|
|
|
|
|
|
st.title("OCR solutions comparator") |
|
|
|
st.markdown("##### *EasyOCR, PPOCR, MMOCR, Tesseract*") |
|
|
|
|
|
|
|
with st.spinner("Initializations in progress ..."): |
|
reader_type_list, reader_type_dict, list_dict_lang, \ |
|
cols_size, dict_back_colors, fig_colorscale = initializations() |
|
img_demo_1, img_demo_2 = get_demo() |
|
|
|
|
|
st.markdown("#### Choose languages for the text recognition:") |
|
lang_col = st.columns(4) |
|
easyocr_key_lang = lang_col[0].selectbox(reader_type_list[0]+" :", list_dict_lang[0].keys(), 26) |
|
easyocr_lang = list_dict_lang[0][easyocr_key_lang] |
|
ppocr_key_lang = lang_col[1].selectbox(reader_type_list[1]+" :", list_dict_lang[1].keys(), 22) |
|
ppocr_lang = list_dict_lang[1][ppocr_key_lang] |
|
|
|
|
|
|
|
|
|
tesserocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 35) |
|
tesserocr_lang = list_dict_lang[2][tesserocr_key_lang] |
|
|
|
st.markdown("#### Choose picture:") |
|
cols_pict = st.columns([1, 2]) |
|
img_typ = cols_pict[0].radio("", ['Upload file', 'Take a picture', 'Use a demo file'], \ |
|
index=0, on_change=raz) |
|
|
|
if img_typ == 'Upload file': |
|
image_file = cols_pict[1].file_uploader("Upload a file:", type=["jpg","jpeg"], on_change=raz) |
|
if img_typ == 'Take a picture': |
|
image_file = cols_pict[1].camera_input("Take a picture:", on_change=raz) |
|
if img_typ == 'Use a demo file': |
|
with st.expander('Choose a demo file:', expanded=True): |
|
demo_used = st.radio('', ['File 1', 'File 2'], index=0, \ |
|
horizontal=True, on_change=raz) |
|
cols_demo = st.columns([1, 2]) |
|
cols_demo[0].markdown('###### File 1') |
|
cols_demo[0].image(img_demo_1, width=150) |
|
cols_demo[1].markdown('###### File 2') |
|
cols_demo[1].image(img_demo_2, width=300) |
|
if demo_used == 'File 1': |
|
image_file = 'img_demo_1.jpg' |
|
else: |
|
image_file = 'img_demo_2.jpg' |
|
|
|
|
|
if image_file is not None: |
|
image_path, image_orig, image_cv2 = load_image(image_file) |
|
list_images = [image_orig, image_cv2] |
|
|
|
|
|
with st.form("form1"): |
|
col1, col2 = st.columns(2, ) |
|
col1.markdown("##### Original image") |
|
col1.image(list_images[0], width=400) |
|
col2.markdown("##### Hyperparameters values for detection") |
|
|
|
with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \ |
|
expanded=False): |
|
t0_min_size = st.slider("min_size", 1, 20, 10, step=1, \ |
|
help="min_size (int, default = 10) - Filter text box smaller than \ |
|
minimum value in pixel") |
|
t0_text_threshold = st.slider("text_threshold", 0.1, 1., 0.7, step=0.1, \ |
|
help="text_threshold (float, default = 0.7) - Text confidence threshold") |
|
t0_low_text = st.slider("low_text", 0.1, 1., 0.4, step=0.1, \ |
|
help="low_text (float, default = 0.4) - Text low-bound score") |
|
t0_link_threshold = st.slider("link_threshold", 0.1, 1., 0.4, step=0.1, \ |
|
help="link_threshold (float, default = 0.4) - Link confidence threshold") |
|
t0_canvas_size = st.slider("canvas_size", 2000, 5000, 2560, step=10, \ |
|
help='''canvas_size (int, default = 2560) \n |
|
Maximum e size. Image bigger than this value will be resized down''') |
|
t0_mag_ratio = st.slider("mag_ratio", 0.1, 5., 1., step=0.1, \ |
|
help="mag_ratio (float, default = 1) - Image magnification ratio") |
|
t0_slope_ths = st.slider("slope_ths", 0.01, 1., 0.1, step=0.01, \ |
|
help='''slope_ths (float, default = 0.1) - Maximum slope \ |
|
(delta y/delta x) to considered merging. \n |
|
Low valuans tiled boxes will not be merged.''') |
|
t0_ycenter_ths = st.slider("ycenter_ths", 0.1, 1., 0.5, step=0.1, \ |
|
help='''ycenter_ths (float, default = 0.5) - Maximum shift in y direction. \n |
|
Boxes wiifferent level should not be merged.''') |
|
t0_height_ths = st.slider("height_ths", 0.1, 1., 0.5, step=0.1, \ |
|
help='''height_ths (float, default = 0.5) - Maximum different in box height. \n |
|
Boxes wiery different text size should not be merged.''') |
|
t0_width_ths = st.slider("width_ths", 0.1, 1., 0.5, step=0.1, \ |
|
help="width_ths (float, default = 0.5) - Maximum horizontal \ |
|
distance to merge boxes.") |
|
t0_add_margin = st.slider("add_margin", 0.1, 1., 0.1, step=0.1, \ |
|
help='''add_margin (float, default = 0.1) - \ |
|
Extend bounding boxes in all direction by certain value. \n |
|
This is rtant for language with complex script (E.g. Thai).''') |
|
t0_optimal_num_chars = st.slider("optimal_num_chars", None, 100, None, step=10, \ |
|
help="optimal_num_chars (int, default = None) - If specified, bounding boxes \ |
|
with estimated number of characters near this value are returned first.") |
|
|
|
with col2.expander("Choose detection hyperparameters for " + reader_type_list[1], \ |
|
expanded=False): |
|
t1_det_algorithm = st.selectbox('det_algorithm', ['DB'], \ |
|
help='Type of detection algorithm selected. (default = DB)') |
|
t1_det_max_side_len = st.slider('det_max_side_len', 500, 2000, 960, step=10, \ |
|
help='''The maximum size of the long side of the image. (default = 960)\n |
|
Limit thximum image height and width.\n |
|
When theg side exceeds this value, the long side will be resized to this size, and the short side \ |
|
will be ed proportionally.''') |
|
t1_det_db_thresh = st.slider('det_db_thresh', 0.1, 1., 0.3, step=0.1, \ |
|
help='''Binarization threshold value of DB output map. (default = 0.3) \n |
|
Used to er the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result.''') |
|
t1_det_db_box_thresh = st.slider('det_db_box_thresh', 0.1, 1., 0.6, step=0.1, \ |
|
help='''The threshold value of the DB output box. (default = 0.6) \n |
|
DB post-essing filter box threshold, if there is a missing box detected, it can be reduced as appropriate. \n |
|
Boxes sclower than this value will be discard.''') |
|
t1_det_db_unclip_ratio = st.slider('det_db_unclip_ratio', 1., 3.0, 1.6, step=0.1, \ |
|
help='''The expanded ratio of DB output box. (default = 1.6) \n |
|
Indicatee compactness of the text box, the smaller the value, the closer the text box to the text.''') |
|
t1_det_east_score_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.8, step=0.1, \ |
|
help="Binarization threshold value of EAST output map. (default = 0.8)") |
|
t1_det_east_cover_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.1, step=0.1, \ |
|
help='''The threshold value of the EAST output box. (default = 0.1) \n |
|
Boxes sclower than this value will be discarded.''') |
|
t1_det_east_nms_thresh = st.slider('det_east_nms_thresh', 0.1, 1., 0.2, step=0.1, \ |
|
help="The NMS threshold value of EAST model output box. (default = 0.2)") |
|
t1_det_db_score_mode = st.selectbox('det_db_score_mode', ['fast', 'slow'], \ |
|
help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \ |
|
to calculate. (default = fast) \n |
|
Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''') |
|
""" |
|
with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \ |
|
expanded=False): |
|
t2_det = st.selectbox('det', ['DB_r18','DB_r50','DBPP_r50','DRRG','FCE_IC15', \ |
|
'FCE_CTW_DCNv2','MaskRCNN_CTW','MaskRCNN_IC15', \ |
|
'MaskRCNN_IC17', 'PANet_CTW','PANet_IC15','PS_CTW',\ |
|
'PS_IC15','Tesseract','TextSnake'], 10, \ |
|
help='Text detection algorithm. (default = PANet_IC15)') |
|
st.write("###### *More about text detection models* π \ |
|
[here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)") |
|
t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \ |
|
help='The maximum x-axis distance to merge boxes. (defaut=20)') |
|
""" |
|
|
|
with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \ |
|
expanded=False): |
|
t3_psm = st.selectbox('Page segmentation mode (psm)', \ |
|
[' - Default', \ |
|
' 4 Assume a single column of text of variable sizes', \ |
|
' 5 Assume a single uniform block of vertically aligned text', \ |
|
' 6 Assume a single uniform block of text', \ |
|
' 7 Treat the image as a single text line', \ |
|
' 8 Treat the image as a single word', \ |
|
' 9 Treat the image as a single word in a circle', \ |
|
'10 Treat the image as a single character', \ |
|
'11 Sparse text. Find as much text as possible in no \ |
|
particular order', \ |
|
'13 Raw line. Treat the image as a single text line, \ |
|
bypassing hacks that are Tesseract-specific']) |
|
t3_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \ |
|
'1 Neural nets LSTM engine only', \ |
|
'2 Legacy + LSTM engines', \ |
|
'3 Default, based on what is available'], 3) |
|
t3_whitelist = st.text_input('Limit tesseract to recognize only this characters :', \ |
|
placeholder='Limit tesseract to recognize only this characters', \ |
|
help='Example for numbers only : 0123456789') |
|
|
|
color_hex = col2.color_picker('Set a color for box outlines:', '#004C99') |
|
color_part = color_hex.lstrip('#') |
|
color = tuple(int(color_part[i:i+2], 16) for i in (0, 2, 4)) |
|
|
|
submit_detect = st.form_submit_button("Launch detection") |
|
|
|
|
|
if submit_detect: |
|
|
|
|
|
if t0_optimal_num_chars == 0: |
|
t0_optimal_num_chars = None |
|
|
|
|
|
t3_config = '' |
|
psm = t3_psm[:2] |
|
if psm != ' -': |
|
t3_config += '--psm ' + psm.strip() |
|
oem = t3_oem[:1] |
|
if oem != '3': |
|
t3_config += ' --oem ' + oem |
|
if t3_whitelist != '': |
|
t3_config += ' -c tessedit_char_whitelist=' + t3_whitelist |
|
|
|
list_params_det = \ |
|
[[easyocr_lang, \ |
|
{'min_size': t0_min_size, 'text_threshold': t0_text_threshold, \ |
|
'low_text': t0_low_text, 'link_threshold': t0_link_threshold, \ |
|
'canvas_size': t0_canvas_size, 'mag_ratio': t0_mag_ratio, \ |
|
'slope_ths': t0_slope_ths, 'ycenter_ths': t0_ycenter_ths, \ |
|
'height_ths': t0_height_ths, 'width_ths': t0_width_ths, \ |
|
'add_margin': t0_add_margin, 'optimal_num_chars': t0_optimal_num_chars \ |
|
}], \ |
|
[ppocr_lang, \ |
|
{'det_algorithm': t1_det_algorithm, 'det_max_side_len': t1_det_max_side_len, \ |
|
'det_db_thresh': t1_det_db_thresh, 'det_db_box_thresh': t1_det_db_box_thresh, \ |
|
'det_db_unclip_ratio': t1_det_db_unclip_ratio, \ |
|
'det_east_score_thresh': t1_det_east_score_thresh, \ |
|
'det_east_cover_thresh': t1_det_east_cover_thresh, \ |
|
'det_east_nms_thresh': t1_det_east_nms_thresh, \ |
|
'det_db_score_mode': t1_det_db_score_mode}], |
|
|
|
[tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}] |
|
] |
|
|
|
show_info1 = st.empty() |
|
show_info1.info("Readers initializations in progress (it may take a while) ...") |
|
list_readers = init_readers(list_params_det) |
|
|
|
show_info1.info("Text detection in progress ...") |
|
list_images, list_coordinates = process_detect(image_path, list_images, list_readers, \ |
|
list_params_det, color) |
|
show_info1.empty() |
|
|
|
|
|
st.session_state.df_results = pd.DataFrame([]) |
|
|
|
st.session_state.list_readers = list_readers |
|
st.session_state.list_coordinates = list_coordinates |
|
st.session_state.list_images = list_images |
|
st.session_state.list_params_det = list_params_det |
|
|
|
if 'columns_size' not in st.session_state: |
|
st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]] |
|
if 'column_width' not in st.session_state: |
|
st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]] |
|
if 'columns_color' not in st.session_state: |
|
st.session_state.columns_color = ["rgb(228,26,28)"] + \ |
|
["rgb(79, 43, 255)" for x in reader_type_list[1:]] |
|
|
|
if st.session_state.list_coordinates: |
|
list_coordinates = st.session_state.list_coordinates |
|
list_images = st.session_state.list_images |
|
list_readers = st.session_state.list_readers |
|
list_params_det = st.session_state.list_params_det |
|
|
|
|
|
st.subheader("Text detection") |
|
show_detect = st.empty() |
|
list_ok_detect = [] |
|
with show_detect.container(): |
|
columns = st.columns(st.session_state.columns_size, ) |
|
for no_col, col in enumerate(columns): |
|
column_title = '<p style="font-size: 20px;color:' + \ |
|
st.session_state.columns_color[no_col] + \ |
|
';">Detection with ' + reader_type_list[no_col]+ '</p>' |
|
col.markdown(column_title, unsafe_allow_html=True) |
|
if isinstance(list_images[no_col+2], PIL.Image.Image): |
|
col.image(list_images[no_col+2], width=st.session_state.column_width[no_col], \ |
|
use_column_width=True) |
|
list_ok_detect.append(reader_type_list[no_col]) |
|
else: |
|
col.write(list_images[no_col+2], use_column_width=True) |
|
|
|
st.subheader("Text recognition") |
|
|
|
st.markdown("##### Using detection performed above by:") |
|
st.radio('Choose the detecter:', list_ok_detect, key='detect_reader', \ |
|
horizontal=True, on_change=highlight) |
|
|
|
|
|
st.markdown("##### Hyperparameters values for recognition:") |
|
with st.form("form2"): |
|
with st.expander("Choose recognition hyperparameters for " + reader_type_list[0], \ |
|
expanded=False): |
|
t0_decoder = st.selectbox('decoder', ['greedy', 'beamsearch', 'wordbeamsearch'], \ |
|
help="decoder (string, default = 'greedy') - options are 'greedy', \ |
|
'beamsearch' and 'wordbeamsearch.") |
|
t0_beamWidth = st.slider('beamWidth', 2, 20, 5, step=1, \ |
|
help="beamWidth (int, default = 5) - How many beam to keep when decoder = \ |
|
'beamsearch' or 'wordbeamsearch'.") |
|
t0_batch_size = st.slider('batch_size', 1, 10, 1, step=1, \ |
|
help="batch_size (int, default = 1) - batch_size>1 will make EasyOCR faster \ |
|
but use more memory.") |
|
t0_workers = st.slider('workers', 0, 10, 0, step=1, \ |
|
help="workers (int, default = 0) - Number thread used in of dataloader.") |
|
t0_allowlist = st.text_input('allowlist', value="", max_chars=None, \ |
|
placeholder='Force EasyOCR to recognize only this subset of characters', \ |
|
help='''allowlist (string) - Force EasyOCR to recognize only subset of characters.\n |
|
Usefor specific problem (E.g. license plate, etc.)''') |
|
t0_blocklist = st.text_input('blocklist', value="", max_chars=None, \ |
|
placeholder='Block subset of character (will be ignored if allowlist is given)', \ |
|
help='''blocklist (string) - Block subset of character. This argument will be \ |
|
ignored if allowlist is given.''') |
|
t0_detail = st.radio('detail', [0, 1], 1, horizontal=True, \ |
|
help="detail (int, default = 1) - Set this to 0 for simple output") |
|
t0_paragraph = st.radio('paragraph', [True, False], 1, horizontal=True, \ |
|
help='paragraph (bool, default = False) - Combine result into paragraph') |
|
t0_contrast_ths = st.slider('contrast_ths', 0.05, 1., 0.1, step=0.01, \ |
|
help='''contrast_ths (float, default = 0.1) - Text box with contrast lower than \ |
|
this value will be passed into model 2 times.\n |
|
Firs with original image and second with contrast adjusted to 'adjust_contrast' value.\n |
|
The with more confident level will be returned as a result.''') |
|
t0_adjust_contrast = st.slider('adjust_contrast', 0.1, 1., 0.5, step=0.1, \ |
|
help = 'adjust_contrast (float, default = 0.5) - target contrast level for low \ |
|
contrast text box') |
|
|
|
with st.expander("Choose recognition hyperparameters for " + reader_type_list[1], \ |
|
expanded=False): |
|
t1_rec_algorithm = st.selectbox('rec_algorithm', ['CRNN', 'SVTR_LCNet'], 0, \ |
|
help="Type of recognition algorithm selected. (default=CRNN)") |
|
t1_rec_batch_num = st.slider('rec_batch_num', 1, 50, step=1, \ |
|
help="When performing recognition, the batchsize of forward images. \ |
|
(default=30)") |
|
t1_max_text_length = st.slider('max_text_length', 3, 250, 25, step=1, \ |
|
help="The maximum text length that the recognition algorithm can recognize. \ |
|
(default=25)") |
|
t1_use_space_char = st.radio('use_space_char', [True, False], 0, horizontal=True, \ |
|
help="Whether to recognize spaces. (default=TRUE)") |
|
t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \ |
|
help="Filter the output by score (from the recognition model), and those \ |
|
below this score will not be returned. (default=0.5)") |
|
""" |
|
with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \ |
|
expanded=False): |
|
t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \ |
|
'NRTR_1/16-1/8','NRTR_1/8-1/4','RobustScanner','SAR','SAR_CN', \ |
|
'SATRN','SATRN_sm','SEG','Tesseract'], 7, \ |
|
help='Text recognition algorithm. (default = SAR)') |
|
st.write("###### *More about text recognition models* π \ |
|
[here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)") |
|
""" |
|
|
|
with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \ |
|
expanded=False): |
|
t3r_psm = st.selectbox('Page segmentation mode (psm)', \ |
|
[' - Default', \ |
|
' 4 Assume a single column of text of variable sizes', \ |
|
' 5 Assume a single uniform block of vertically aligned \ |
|
text', \ |
|
' 6 Assume a single uniform block of text', \ |
|
' 7 Treat the image as a single text line', \ |
|
' 8 Treat the image as a single word', \ |
|
' 9 Treat the image as a single word in a circle', \ |
|
'10 Treat the image as a single character', \ |
|
'11 Sparse text. Find as much text as possible in no \ |
|
particular order', \ |
|
'13 Raw line. Treat the image as a single text line, \ |
|
bypassing hacks that are Tesseract-specific']) |
|
t3r_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \ |
|
'1 Neural nets LSTM engine only', \ |
|
'2 Legacy + LSTM engines', \ |
|
'3 Default, based on what is available'], 3) |
|
t3r_whitelist = st.text_input('Limit tesseract to recognize only this \ |
|
characters :', \ |
|
placeholder='Limit tesseract to recognize only this characters', \ |
|
help='Example for numbers only : 0123456789') |
|
|
|
submit_reco = st.form_submit_button("Launch recognition") |
|
|
|
if submit_reco: |
|
process_detect.clear() |
|
|
|
reader_ind = reader_type_dict[st.session_state.detect_reader] |
|
list_boxes = list_coordinates[reader_ind] |
|
|
|
|
|
t3r_config = '' |
|
psm = t3r_psm[:2] |
|
if psm != ' -': |
|
t3r_config += '--psm ' + psm.strip() |
|
oem = t3r_oem[:1] |
|
if oem != '3': |
|
t3r_config += ' --oem ' + oem |
|
if t3r_whitelist != '': |
|
t3r_config += ' -c tessedit_char_whitelist=' + t3r_whitelist |
|
|
|
list_params_rec = \ |
|
[{'decoder': t0_decoder, 'beamWidth': t0_beamWidth, \ |
|
'batch_size': t0_batch_size, 'workers': t0_workers, \ |
|
'allowlist': t0_allowlist, 'blocklist': t0_blocklist, \ |
|
'detail': t0_detail, 'paragraph': t0_paragraph, \ |
|
'contrast_ths': t0_contrast_ths, 'adjust_contrast': t0_adjust_contrast |
|
}, |
|
{ **list_params_det[1][1], **{'rec_algorithm': t1_rec_algorithm, \ |
|
'rec_batch_num': t1_rec_batch_num, 'max_text_length': t1_max_text_length, \ |
|
'use_space_char': t1_use_space_char, 'drop_score': t1_drop_score}, \ |
|
**{'lang': list_params_det[1][0]} |
|
}, |
|
|
|
{'lang': tesserocr_lang, 'config': t3r_config} |
|
] |
|
|
|
show_info2 = st.empty() |
|
|
|
with show_info2.container(): |
|
st.info("Text recognition in progress ...") |
|
df_results, df_results_tesseract, list_reco_status = \ |
|
process_recog(list_readers, list_images[1], list_boxes, list_params_rec) |
|
show_info2.empty() |
|
|
|
st.session_state.df_results = df_results |
|
st.session_state.list_boxes = list_boxes |
|
st.session_state.df_results_tesseract = df_results_tesseract |
|
st.session_state.list_reco_status = list_reco_status |
|
|
|
if 'df_results' in st.session_state: |
|
if not st.session_state.df_results.empty: |
|
|
|
results_cols = st.session_state.df_results.columns |
|
list_col_text = np.arange(1, len(cols_size), 2) |
|
list_col_confid = np.arange(2, len(cols_size), 2) |
|
|
|
dict_draw_reco = {'in_image': st.session_state.list_images[1], \ |
|
'in_boxes_coordinates': st.session_state.list_boxes, \ |
|
'in_list_texts': [st.session_state.df_results[x].to_list() \ |
|
for x in results_cols[list_col_text]], \ |
|
'in_list_confid': [st.session_state.df_results[x].to_list() \ |
|
for x in results_cols[list_col_confid]], \ |
|
'in_dict_back_colors': dict_back_colors, \ |
|
'in_df_results_tesseract' : st.session_state.df_results_tesseract, \ |
|
'in_reader_type_list': reader_type_list |
|
} |
|
show_reco = st.empty() |
|
|
|
with st.form("form3"): |
|
st.plotly_chart(fig_colorscale, use_container_width=True) |
|
|
|
col_font, col_threshold = st.columns(2) |
|
|
|
col_font.slider('Font scale', 1, 7, 1, step=1, key="font_scale_sld") |
|
col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \ |
|
step=1, key="conf_threshold_sld") |
|
col_threshold.write("(text color is black below this % confidence threshold, \ |
|
and white above)") |
|
|
|
draw_reco_images(**dict_draw_reco) |
|
|
|
submit_resize = st.form_submit_button("Refresh") |
|
|
|
if submit_resize: |
|
draw_reco_images(**dict_draw_reco, \ |
|
in_font_scale=st.session_state.font_scale_sld, \ |
|
in_conf_threshold=st.session_state.conf_threshold_sld) |
|
|
|
st.subheader("Recognition details") |
|
|
|
with st.expander("Detailed areas for EasyOCR, PPOCR", expanded=True): |
|
cols = st.columns(cols_size) |
|
cols[0].markdown('#### Detected area') |
|
for i in range(1, (len(reader_type_list)-1)*2, 2): |
|
cols[i].markdown('#### with ' + reader_type_list[i//2]) |
|
|
|
for row in st.session_state.df_results.itertuples(): |
|
|
|
cols = st.columns(cols_size) |
|
cols[0].image(row.cropped_image, width=150) |
|
for ind_col in range(1, len(cols), 2): |
|
cols[ind_col].write(getattr(row, results_cols[ind_col])) |
|
cols[ind_col+1].write("("+str( \ |
|
getattr(row, results_cols[ind_col+1]))+"%)") |
|
|
|
st.download_button( |
|
label="Download results as CSV file", |
|
data=convert_df(st.session_state.df_results), |
|
file_name='OCR_comparator_results.csv', |
|
mime='text/csv', |
|
) |
|
|
|
if not st.session_state.df_results_tesseract.empty: |
|
with st.expander("Detailed areas for Tesseract", expanded=False): |
|
cols = st.columns([2,2,1]) |
|
cols[0].markdown('#### Detected area') |
|
cols[1].markdown('#### with Tesseract') |
|
|
|
for row in st.session_state.df_results_tesseract.itertuples(): |
|
cols = st.columns([2,2,1]) |
|
cols[0].image(row.cropped, width=150) |
|
cols[1].write(getattr(row, 'text')) |
|
cols[2].write("("+str(getattr(row, 'conf'))+"%)") |
|
|
|
st.download_button( |
|
label="Download Tesseract results as CSV file", |
|
data=convert_df(st.session_state.df_results), |
|
file_name='OCR_comparator_Tesseract_results.csv', |
|
mime='text/csv', |
|
) |
|
|