Spaces:
Sleeping
Sleeping
| import torch | |
| import math | |
| from torch.optim import Adam | |
| from torch.optim.optimizer import Optimizer | |
| from utils.class_registry import ClassRegistry | |
| optimizers = ClassRegistry() | |
| class Adam(Adam): | |
| def __init__( | |
| self, | |
| params, | |
| lr=1e-4, | |
| betas=(0.9, 0.999), | |
| eps=1e-8, | |
| weight_decay=0, | |
| amsgrad=False, | |
| ): | |
| super().__init__(params, lr, tuple(betas), eps, weight_decay, amsgrad) | |
| class Ranger(Optimizer): | |
| def __init__( | |
| self, | |
| params, | |
| lr=1e-4, # lr | |
| alpha=0.5, | |
| k=6, | |
| N_sma_threshhold=5, # Ranger options | |
| betas=(0.95, 0.999), | |
| eps=1e-5, | |
| weight_decay=0, # Adam options | |
| use_gc=True, | |
| gc_conv_only=False | |
| # Gradient centralization on or off, applied to conv layers only or conv + fc layers | |
| ): | |
| # parameter checks | |
| assert params is not None | |
| if not 0.0 <= alpha <= 1.0: | |
| raise ValueError(f"Invalid slow update rate: {alpha}") | |
| if not 1 <= k: | |
| raise ValueError(f"Invalid lookahead steps: {k}") | |
| if not lr > 0: | |
| raise ValueError(f"Invalid Learning Rate: {lr}") | |
| if not eps > 0: | |
| raise ValueError(f"Invalid eps: {eps}") | |
| # parameter comments: | |
| # beta1 (momentum) of .95 seems to work better than .90... | |
| # N_sma_threshold of 5 seems better in testing than 4. | |
| # In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you. | |
| # prep defaults and init torch.optim base | |
| betas = tuple(betas) | |
| defaults = dict( | |
| lr=lr, | |
| alpha=alpha, | |
| k=k, | |
| step_counter=0, | |
| betas=betas, | |
| N_sma_threshhold=N_sma_threshhold, | |
| eps=eps, | |
| weight_decay=weight_decay, | |
| ) | |
| super().__init__(params, defaults) | |
| # adjustable threshold | |
| self.N_sma_threshhold = N_sma_threshhold | |
| # look ahead params | |
| self.alpha = alpha | |
| self.k = k | |
| # radam buffer for state | |
| self.radam_buffer = [[None, None, None] for ind in range(10)] | |
| # gc on or off | |
| self.use_gc = use_gc | |
| # level of gradient centralization | |
| self.gc_gradient_threshold = 3 if gc_conv_only else 1 | |
| def __setstate__(self, state): | |
| super(Ranger, self).__setstate__(state) | |
| def step(self, closure=None): | |
| loss = None | |
| # Evaluate averages and grad, update param tensors | |
| for group in self.param_groups: | |
| for p in group["params"]: | |
| if p.grad is None: | |
| continue | |
| grad = p.grad.data.float() | |
| if grad.is_sparse: | |
| raise RuntimeError( | |
| "Ranger optimizer does not support sparse gradients" | |
| ) | |
| p_data_fp32 = p.data.float() | |
| state = self.state[p] # get state dict for this param | |
| if ( | |
| len(state) == 0 | |
| ): # if first time to run...init dictionary with our desired entries | |
| # if self.first_run_check==0: | |
| # self.first_run_check=1 | |
| # print("Initializing slow buffer...should not see this at load from saved model!") | |
| state["step"] = 0 | |
| state["exp_avg"] = torch.zeros_like(p_data_fp32) | |
| state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) | |
| # look ahead weight storage now in state dict | |
| state["slow_buffer"] = torch.empty_like(p.data) | |
| state["slow_buffer"].copy_(p.data) | |
| else: | |
| state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32) | |
| state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32) | |
| # begin computations | |
| exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] | |
| beta1, beta2 = group["betas"] | |
| # GC operation for Conv layers and FC layers | |
| if grad.dim() > self.gc_gradient_threshold: | |
| grad.add_(-grad.mean(dim=tuple(range(1, grad.dim())), keepdim=True)) | |
| state["step"] += 1 | |
| # compute variance mov avg | |
| exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
| # compute mean moving avg | |
| exp_avg.mul_(beta1).add_(1 - beta1, grad) | |
| buffered = self.radam_buffer[int(state["step"] % 10)] | |
| if state["step"] == buffered[0]: | |
| N_sma, step_size = buffered[1], buffered[2] | |
| else: | |
| buffered[0] = state["step"] | |
| beta2_t = beta2 ** state["step"] | |
| N_sma_max = 2 / (1 - beta2) - 1 | |
| N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t) | |
| buffered[1] = N_sma | |
| if N_sma > self.N_sma_threshhold: | |
| step_size = math.sqrt( | |
| (1 - beta2_t) | |
| * (N_sma - 4) | |
| / (N_sma_max - 4) | |
| * (N_sma - 2) | |
| / N_sma | |
| * N_sma_max | |
| / (N_sma_max - 2) | |
| ) / (1 - beta1 ** state["step"]) | |
| else: | |
| step_size = 1.0 / (1 - beta1 ** state["step"]) | |
| buffered[2] = step_size | |
| if group["weight_decay"] != 0: | |
| p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32) | |
| # apply lr | |
| if N_sma > self.N_sma_threshhold: | |
| denom = exp_avg_sq.sqrt().add_(group["eps"]) | |
| p_data_fp32.addcdiv_(-step_size * group["lr"], exp_avg, denom) | |
| else: | |
| p_data_fp32.add_(-step_size * group["lr"], exp_avg) | |
| p.data.copy_(p_data_fp32) | |
| # integrated look ahead... | |
| # we do it at the param level instead of group level | |
| if state["step"] % group["k"] == 0: | |
| slow_p = state["slow_buffer"] # get access to slow param tensor | |
| slow_p.add_( | |
| self.alpha, p.data - slow_p | |
| ) # (fast weights - slow weights) * alpha | |
| p.data.copy_( | |
| slow_p | |
| ) # copy interpolated weights to RAdam param tensor | |
| return loss | |