Spaces:
Runtime error
Runtime error
Update app
Browse files- .gitignore +1 -0
- app.old.py +183 -0
- app.py +22 -171
- default_inputs.json +5 -0
- requirements.txt +4 -3
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.venv
|
app.old.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
# import matplotlib.pyplot as plt
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import xgboost_infer
|
7 |
+
|
8 |
+
# def predict_genus_dna(dnaSeqs):
|
9 |
+
# genuses = []
|
10 |
+
|
11 |
+
# # probs = dnamodel.predict_proba(dnaSeqs)
|
12 |
+
# # preds = dnamodel.predict(dnaSeqs)
|
13 |
+
# # topProb = np.argsort(probs, axis=1)[:,-3:]
|
14 |
+
# # topClass = dnamodel.classes_[topProb]
|
15 |
+
|
16 |
+
# # pred_df = pd.DataFrame(data=[topClass, topProb], columns= ['Genus', 'Probability'])
|
17 |
+
|
18 |
+
# return genuses
|
19 |
+
|
20 |
+
# def predict_genus_dna_env(dnaSeqsEnv):
|
21 |
+
# genuses = {}
|
22 |
+
# probs = model.predict_proba(dnaSeqsEnv)
|
23 |
+
# preds = model.predict(dnaSeqsEnv)
|
24 |
+
|
25 |
+
# for i in range(len(dnaSeqsEnv)):
|
26 |
+
# topProb = np.argsort(probs[i], axis=1)[:,-3:]
|
27 |
+
# topClass = model.classes_[topProb]
|
28 |
+
|
29 |
+
# sampleStr = dnaSeqsEnv['nucraw'][i]
|
30 |
+
# genuses[sampleStr] = (topClass, topProb)
|
31 |
+
|
32 |
+
# pred_df = pd.DataFrame(data=[top5class, top5prob], columns= ['Genus', 'Probability'])
|
33 |
+
|
34 |
+
# return genuses
|
35 |
+
|
36 |
+
# def get_genus_image(genus):
|
37 |
+
# # return a URL to genus image
|
38 |
+
# return f"https://example.com/images/{genus}.jpg"
|
39 |
+
|
40 |
+
def get_genuses(dna_file, dnaenv_file):
|
41 |
+
dna_df = pd.read_csv(dna_file.name)
|
42 |
+
dnaenv_df = pd.read_csv(dnaenv_file.name)
|
43 |
+
|
44 |
+
results = []
|
45 |
+
|
46 |
+
# envdna_genuses = predict_genus_dna_env(dnaenv_df)
|
47 |
+
# dna_genuses = predict_genus_dna(dna_df)
|
48 |
+
# images = [get_genus_image(genus) for genus in top_5_genuses]
|
49 |
+
|
50 |
+
genuses = xgboost_infer.infer()
|
51 |
+
|
52 |
+
results.append({
|
53 |
+
"sequence": dna_df['nucraw'],
|
54 |
+
# "predictions": pd.concat([dna_genuses, envdna_genuses], axis=0)
|
55 |
+
'predictions': genuses
|
56 |
+
})
|
57 |
+
|
58 |
+
return results
|
59 |
+
|
60 |
+
def display_results(results):
|
61 |
+
display = []
|
62 |
+
for result in results:
|
63 |
+
# for i in range(len(result["predictions"])):
|
64 |
+
# display.append({
|
65 |
+
# "DNA Sequence": result["sequence"],
|
66 |
+
# "DNA Pred Genus": result['predictions'][i][0],
|
67 |
+
# "DNA Only Prob": result['predictions'][i][1],
|
68 |
+
# "DNA Env Pred Genus": result['predictions'][i][2],
|
69 |
+
# "DNA Env Prob": result['predictions'][i][3],
|
70 |
+
# # "Image": result["images"][i]
|
71 |
+
# })
|
72 |
+
display.append({
|
73 |
+
"DNA Sequence": result["sequence"],
|
74 |
+
"DNA Pred Genus": result['predictions'][0]
|
75 |
+
})
|
76 |
+
return pd.DataFrame(display)
|
77 |
+
|
78 |
+
def gradio_interface(file):
|
79 |
+
results = get_genuses(file)
|
80 |
+
return display_results(results)
|
81 |
+
|
82 |
+
# Gradio interface
|
83 |
+
with gr.Blocks() as demo:
|
84 |
+
with gr.Column():
|
85 |
+
gr.Markdown("# DNA Identifier Tool")
|
86 |
+
file_input = gr.File(label="Upload DNA CSV file", file_types=['csv'])
|
87 |
+
output_table = gr.Dataframe(headers=["DNA", "Coord", "DNA Only Pred Genus", "DNA Only Prob", "DNA & Env Pred Genus", "DNA & Env Prob"])
|
88 |
+
|
89 |
+
def update_output(file):
|
90 |
+
result_df = gradio_interface(file)
|
91 |
+
return result_df
|
92 |
+
|
93 |
+
file_input.change(update_output, inputs=file_input, outputs=output_table)
|
94 |
+
|
95 |
+
demo.launch()
|
96 |
+
|
97 |
+
|
98 |
+
# with gr.Blocks() as demo:
|
99 |
+
# with gr.Row():
|
100 |
+
# word = gr.Textbox(label="word")
|
101 |
+
# leng = gr.Number(label="leng")
|
102 |
+
# output = gr.Textbox(label="Output")
|
103 |
+
# with gr.Row():
|
104 |
+
# run = gr.Button()
|
105 |
+
|
106 |
+
# event = run.click(predict_genus,
|
107 |
+
# [word, leng],
|
108 |
+
# output,
|
109 |
+
# batch=True,
|
110 |
+
# max_batch_size=20)
|
111 |
+
|
112 |
+
# demo.launch()
|
113 |
+
|
114 |
+
# DB_USER = os.getenv("DB_USER")
|
115 |
+
# DB_PASSWORD = os.getenv("DB_PASSWORD")
|
116 |
+
# DB_HOST = os.getenv("DB_HOST")
|
117 |
+
# PORT = 8080
|
118 |
+
# DB_NAME = "bikeshare"
|
119 |
+
|
120 |
+
# connection_string = f"postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}?port={PORT}&dbname={DB_NAME}"
|
121 |
+
|
122 |
+
# def get_count_ride_type():
|
123 |
+
# df = pd.read_sql(
|
124 |
+
# """
|
125 |
+
# SELECT COUNT(ride_id) as n, rideable_type
|
126 |
+
# FROM rides
|
127 |
+
# GROUP BY rideable_type
|
128 |
+
# ORDER BY n DESC
|
129 |
+
# """,
|
130 |
+
# con=connection_string
|
131 |
+
# )
|
132 |
+
# fig_m, ax = plt.subplots()
|
133 |
+
# ax.bar(x=df['rideable_type'], height=df['n'])
|
134 |
+
# ax.set_title("Number of rides by bycycle type")
|
135 |
+
# ax.set_ylabel("Number of Rides")
|
136 |
+
# ax.set_xlabel("Bicycle Type")
|
137 |
+
# return fig_m
|
138 |
+
|
139 |
+
|
140 |
+
# def get_most_popular_stations():
|
141 |
+
|
142 |
+
# df = pd.read_sql(
|
143 |
+
# """
|
144 |
+
# SELECT COUNT(ride_id) as n, MAX(start_station_name) as station
|
145 |
+
# FROM RIDES
|
146 |
+
# WHERE start_station_name is NOT NULL
|
147 |
+
# GROUP BY start_station_id
|
148 |
+
# ORDER BY n DESC
|
149 |
+
# LIMIT 5
|
150 |
+
# """,
|
151 |
+
# con=connection_string
|
152 |
+
# )
|
153 |
+
# fig_m, ax = plt.subplots()
|
154 |
+
# ax.bar(x=df['station'], height=df['n'])
|
155 |
+
# ax.set_title("Most popular stations")
|
156 |
+
# ax.set_ylabel("Number of Rides")
|
157 |
+
# ax.set_xlabel("Station Name")
|
158 |
+
# ax.set_xticklabels(
|
159 |
+
# df['station'], rotation=45, ha="right", rotation_mode="anchor"
|
160 |
+
# )
|
161 |
+
# ax.tick_params(axis="x", labelsize=8)
|
162 |
+
# fig_m.tight_layout()
|
163 |
+
# return fig_m
|
164 |
+
|
165 |
+
|
166 |
+
# with gr.Blocks() as demo:
|
167 |
+
# with gr.Row():
|
168 |
+
# bike_type = gr.Plot()
|
169 |
+
# station = gr.Plot()
|
170 |
+
|
171 |
+
# demo.load(get_count_ride_type, inputs=None, outputs=bike_type)
|
172 |
+
# demo.load(get_most_popular_stations, inputs=None, outputs=station)
|
173 |
+
|
174 |
+
# def greet(name, intensity):
|
175 |
+
# return "Hello, " + name + "!" * int(intensity)
|
176 |
+
|
177 |
+
# demo = gr.Interface(
|
178 |
+
# fn=greet,
|
179 |
+
# inputs=["text", "slider"],
|
180 |
+
# outputs=["text"],
|
181 |
+
# )
|
182 |
+
|
183 |
+
demo.launch()
|
app.py
CHANGED
@@ -1,183 +1,34 @@
|
|
1 |
-
import
|
2 |
-
import pandas as pd
|
3 |
-
# import matplotlib.pyplot as plt
|
4 |
-
import gradio as gr
|
5 |
-
import numpy as np
|
6 |
-
import xgboost_infer
|
7 |
-
|
8 |
-
# def predict_genus_dna(dnaSeqs):
|
9 |
-
# genuses = []
|
10 |
-
|
11 |
-
# # probs = dnamodel.predict_proba(dnaSeqs)
|
12 |
-
# # preds = dnamodel.predict(dnaSeqs)
|
13 |
-
# # topProb = np.argsort(probs, axis=1)[:,-3:]
|
14 |
-
# # topClass = dnamodel.classes_[topProb]
|
15 |
-
|
16 |
-
# # pred_df = pd.DataFrame(data=[topClass, topProb], columns= ['Genus', 'Probability'])
|
17 |
-
|
18 |
-
# return genuses
|
19 |
-
|
20 |
-
# def predict_genus_dna_env(dnaSeqsEnv):
|
21 |
-
# genuses = {}
|
22 |
-
# probs = model.predict_proba(dnaSeqsEnv)
|
23 |
-
# preds = model.predict(dnaSeqsEnv)
|
24 |
-
|
25 |
-
# for i in range(len(dnaSeqsEnv)):
|
26 |
-
# topProb = np.argsort(probs[i], axis=1)[:,-3:]
|
27 |
-
# topClass = model.classes_[topProb]
|
28 |
|
29 |
-
|
30 |
-
# genuses[sampleStr] = (topClass, topProb)
|
31 |
-
|
32 |
-
# pred_df = pd.DataFrame(data=[top5class, top5prob], columns= ['Genus', 'Probability'])
|
33 |
-
|
34 |
-
# return genuses
|
35 |
|
36 |
-
# def get_genus_image(genus):
|
37 |
-
# # return a URL to genus image
|
38 |
-
# return f"https://example.com/images/{genus}.jpg"
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
dnaenv_df = pd.read_csv(dnaenv_file.name)
|
43 |
-
|
44 |
-
results = []
|
45 |
-
|
46 |
-
# envdna_genuses = predict_genus_dna_env(dnaenv_df)
|
47 |
-
# dna_genuses = predict_genus_dna(dna_df)
|
48 |
-
# images = [get_genus_image(genus) for genus in top_5_genuses]
|
49 |
|
50 |
-
genuses = xgboost_infer.infer()
|
51 |
-
|
52 |
-
results.append({
|
53 |
-
"sequence": dna_df['nucraw'],
|
54 |
-
# "predictions": pd.concat([dna_genuses, envdna_genuses], axis=0)
|
55 |
-
'predictions': genuses
|
56 |
-
})
|
57 |
-
|
58 |
-
return results
|
59 |
|
60 |
-
def
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# display.append({
|
65 |
-
# "DNA Sequence": result["sequence"],
|
66 |
-
# "DNA Pred Genus": result['predictions'][i][0],
|
67 |
-
# "DNA Only Prob": result['predictions'][i][1],
|
68 |
-
# "DNA Env Pred Genus": result['predictions'][i][2],
|
69 |
-
# "DNA Env Prob": result['predictions'][i][3],
|
70 |
-
# # "Image": result["images"][i]
|
71 |
-
# })
|
72 |
-
display.append({
|
73 |
-
"DNA Sequence": result["sequence"],
|
74 |
-
"DNA Pred Genus": result['predictions'][0]
|
75 |
-
})
|
76 |
-
return pd.DataFrame(display)
|
77 |
|
78 |
-
def gradio_interface(file):
|
79 |
-
results = get_genuses(file)
|
80 |
-
return display_results(results)
|
81 |
|
82 |
-
# Gradio interface
|
83 |
with gr.Blocks() as demo:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
output_table = gr.Dataframe(headers=["DNA", "Coord", "DNA Only Pred Genus", "DNA Only Prob", "DNA & Env Pred Genus", "DNA & Env Prob"])
|
88 |
-
|
89 |
-
def update_output(file):
|
90 |
-
result_df = gradio_interface(file)
|
91 |
-
return result_df
|
92 |
-
|
93 |
-
file_input.change(update_output, inputs=file_input, outputs=output_table)
|
94 |
-
|
95 |
-
demo.launch()
|
96 |
-
|
97 |
-
|
98 |
-
# with gr.Blocks() as demo:
|
99 |
-
# with gr.Row():
|
100 |
-
# word = gr.Textbox(label="word")
|
101 |
-
# leng = gr.Number(label="leng")
|
102 |
-
# output = gr.Textbox(label="Output")
|
103 |
-
# with gr.Row():
|
104 |
-
# run = gr.Button()
|
105 |
|
106 |
-
#
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
111 |
|
112 |
-
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
# DB_HOST = os.getenv("DB_HOST")
|
117 |
-
# PORT = 8080
|
118 |
-
# DB_NAME = "bikeshare"
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
# def get_count_ride_type():
|
123 |
-
# df = pd.read_sql(
|
124 |
-
# """
|
125 |
-
# SELECT COUNT(ride_id) as n, rideable_type
|
126 |
-
# FROM rides
|
127 |
-
# GROUP BY rideable_type
|
128 |
-
# ORDER BY n DESC
|
129 |
-
# """,
|
130 |
-
# con=connection_string
|
131 |
-
# )
|
132 |
-
# fig_m, ax = plt.subplots()
|
133 |
-
# ax.bar(x=df['rideable_type'], height=df['n'])
|
134 |
-
# ax.set_title("Number of rides by bycycle type")
|
135 |
-
# ax.set_ylabel("Number of Rides")
|
136 |
-
# ax.set_xlabel("Bicycle Type")
|
137 |
-
# return fig_m
|
138 |
-
|
139 |
-
|
140 |
-
# def get_most_popular_stations():
|
141 |
-
|
142 |
-
# df = pd.read_sql(
|
143 |
-
# """
|
144 |
-
# SELECT COUNT(ride_id) as n, MAX(start_station_name) as station
|
145 |
-
# FROM RIDES
|
146 |
-
# WHERE start_station_name is NOT NULL
|
147 |
-
# GROUP BY start_station_id
|
148 |
-
# ORDER BY n DESC
|
149 |
-
# LIMIT 5
|
150 |
-
# """,
|
151 |
-
# con=connection_string
|
152 |
-
# )
|
153 |
-
# fig_m, ax = plt.subplots()
|
154 |
-
# ax.bar(x=df['station'], height=df['n'])
|
155 |
-
# ax.set_title("Most popular stations")
|
156 |
-
# ax.set_ylabel("Number of Rides")
|
157 |
-
# ax.set_xlabel("Station Name")
|
158 |
-
# ax.set_xticklabels(
|
159 |
-
# df['station'], rotation=45, ha="right", rotation_mode="anchor"
|
160 |
-
# )
|
161 |
-
# ax.tick_params(axis="x", labelsize=8)
|
162 |
-
# fig_m.tight_layout()
|
163 |
-
# return fig_m
|
164 |
-
|
165 |
-
|
166 |
-
# with gr.Blocks() as demo:
|
167 |
-
# with gr.Row():
|
168 |
-
# bike_type = gr.Plot()
|
169 |
-
# station = gr.Plot()
|
170 |
-
|
171 |
-
# demo.load(get_count_ride_type, inputs=None, outputs=bike_type)
|
172 |
-
# demo.load(get_most_popular_stations, inputs=None, outputs=station)
|
173 |
-
|
174 |
-
# def greet(name, intensity):
|
175 |
-
# return "Hello, " + name + "!" * int(intensity)
|
176 |
-
|
177 |
-
# demo = gr.Interface(
|
178 |
-
# fn=greet,
|
179 |
-
# inputs=["text", "slider"],
|
180 |
-
# outputs=["text"],
|
181 |
-
# )
|
182 |
-
|
183 |
-
demo.launch()
|
|
|
1 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
5 |
|
6 |
+
with open("default_inputs.json", "r") as default_inputs_file:
|
7 |
+
DEFAULT_INPUTS = json.load(default_inputs_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def set_default_inputs():
|
11 |
+
return (DEFAULT_INPUTS["dna_sequence"],
|
12 |
+
DEFAULT_INPUTS["latitude"],
|
13 |
+
DEFAULT_INPUTS["longitude"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
15 |
|
|
|
16 |
with gr.Blocks() as demo:
|
17 |
+
# Header section
|
18 |
+
gr.Markdown("# DNA Identifier Tool")
|
19 |
+
gr.Markdown("TODO short description of the tool...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Collect inputs for app (DNA and location)
|
22 |
+
with gr.Row():
|
23 |
+
inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (will be automatically truncated to 660 characters)")
|
24 |
+
with gr.Row():
|
25 |
+
inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083")
|
26 |
+
inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281")
|
27 |
|
28 |
+
with gr.Row():
|
29 |
+
btn_run = gr.Button("Run")
|
30 |
|
31 |
+
btn_defaults = gr.Button("I'm feeling lucky")
|
32 |
+
btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])
|
|
|
|
|
|
|
33 |
|
34 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
default_inputs.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dna_sequence": "AACAATGTATTTGATTTTCGCCCTTGTGAATTTATTCGCTGGCGGAACAATGGCATTGTTGATTCGTTTGGAGTTGTTCCAACCTGGCTTGCAATTTTTAAGACCTGAGTTTTTTAATCAGTTAACAACTATGCACGGCCTTATAATGGTTTTCGGTGCAATTATGCCGGCCTTTGTGGGTTTTGCTAACTTGATGATTCCTTTGCAAATTGGTGCCTCTGATATGGCGTTTGCAAGAATGAACAATTTTAGTTTCTGGATTATGCCTGTTGCAGGGATGTTATTATTTGGCTCATTTTTGGCTCCTGGTGGCGCTACTGCAGCTGGTTGGACTTTGTATGCTCCTTTGTCGGTCCAAATGGGGCCTGGTATGGACATGACTATTTTTGCTGTTCACTTGATGGGTGCTTCATCCATTATGGGATCCATTAATATCATTGTGACAATTCTGAATATGCGTGCTCCTGGACTGTCTTTGATGAAGATGCCAATGTTCTGTTGGACATGGTTGATTACTGCATATTTGTTAATTGCGGTTATGCCTGTTTTAGCTGGTGCTATCACTATGGTTCTAACAGACCGTCACTTTGGAACAAGCTTTTTTGCAGCTGCTGGCGGTGGAGACCCTGTAATGTATCAACATATCTTC",
|
3 |
+
"latitude": "-3.009083",
|
4 |
+
"longitude": "-58.68281"
|
5 |
+
}
|
requirements.txt
CHANGED
@@ -3,6 +3,7 @@ pandas==2.2.2
|
|
3 |
torch==2.3.0
|
4 |
tqdm==4.66.4
|
5 |
transformers==4.41.2
|
6 |
-
|
7 |
-
numpy
|
8 |
-
datasets
|
|
|
|
3 |
torch==2.3.0
|
4 |
tqdm==4.66.4
|
5 |
transformers==4.41.2
|
6 |
+
scikit-learn==1.5.0
|
7 |
+
numpy==1.26.4
|
8 |
+
datasets==2.19.1
|
9 |
+
gradio==4.32.2
|